已知△ABC及所在平面一點P,符合條件:,且,則△ABC的形狀為

[  ]

A.正△ABC

B.等腰△ABC

C.直角△ABC

D.等腰直角△ABC

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆浙江省高一下學期期中考試數(shù)學試卷(解析版) 題型:選擇題

給出下列命題:(1)、是銳角的兩個內(nèi)角,則;(2)在銳角中,的取值范圍為 ( );(3)已知為互相垂直的單位向量,的夾角為銳角,則實數(shù)的取值范圍是;(4)已知O是所在平面內(nèi)定點,若P是的內(nèi)心,則有;(5)直線x= -是函數(shù)y=sin(2x-)圖象的一條對稱軸。其中正確命題是(     )

A 。(1)(3)(5)         B。 (2)(4)(5)        C。 (2)(3)(4)      D。(1) (4) (5)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高一下學期期中考試數(shù)學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大。

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設(shè)AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內(nèi)的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設(shè)AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內(nèi)的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,F(xiàn)OPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(19)已知VC所在平面的一條斜線,點NV在平面ABC上的射影,且在的高CD上.之間的距離為

(Ⅰ)證明∠MDC是二面角M–AB–C的平面角;

(Ⅱ)當∠MDC=∠CVN時,證明VC;

(Ⅲ)若∠MDC=∠CVN=,求四面體MABC的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(20)已知VC所在平面的一條斜線,點NV在平面ABC上的射影,且N位于的高CD上.之間的距離為

(Ⅰ)證明∠MDC是二面角M–AB–C的平面角;

(Ⅱ)當∠MDC=∠CVN時,證明VC;

(Ⅲ)若∠MDC=∠CVN=,求四面體MABC的體積.

查看答案和解析>>

同步練習冊答案