已知橢圓與圓,若在橢圓上存在點(diǎn)P,使得由點(diǎn)P所作的圓的兩條切線互相垂直,則橢圓的離心率的取值范圍是(    )
A.B.C.D.
C

試題分析:橢圓上長(zhǎng)軸端點(diǎn)向圓外兩條切線PA,PB,則兩切線形成的角最小,若橢圓上存在點(diǎn)P令切線互相垂直,則只需,即,∴,解得,
,即,而,∴,即.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的斜率互為相反數(shù),求證:直線l過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:()的短軸長(zhǎng)為2,離心率為
(1)求橢圓C的方程
(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn),圓C:與橢圓E:有一個(gè)公共點(diǎn),分別是橢圓的左、右焦點(diǎn),直線與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果橢圓上一點(diǎn)到焦點(diǎn)的距離為6,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為(  )
A.10B.6C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)分別為橢圓:的左右頂點(diǎn),為右焦點(diǎn),在點(diǎn)處的切線,上異于的一點(diǎn),直線,中點(diǎn),有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點(diǎn)不存在.其中正確結(jié)論的序號(hào)是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓經(jīng)過(guò)原點(diǎn),且焦點(diǎn)分別為 則該橢圓的短軸長(zhǎng)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓的一個(gè)焦點(diǎn)作垂直于實(shí)軸的弦,是另一焦點(diǎn),若∠,則橢圓的離心率等于(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案