【題目】某自然資源探險組織試圖穿越某峽谷,但峽谷內(nèi)被某致命昆蟲所侵?jǐn)_,為了穿越這個峽谷,該探險組織進(jìn)行了詳細(xì)的調(diào)研,若每平方米的昆蟲數(shù)量記為昆蟲密度,調(diào)研發(fā)現(xiàn),在這個峽谷中,昆蟲密度是時間(單位:小時)的一個連續(xù)不間斷的函數(shù)其函數(shù)表達(dá)式為
,
其中時間是午夜零點后的小時數(shù),為常數(shù).
(1)求的值;
(2)求出昆蟲密度的最小值和出現(xiàn)最小值的時間;
(3)若昆蟲密度不超過1250只/平方米,則昆蟲的侵?jǐn)_是非致命性的,那么在一天24小時內(nèi)哪些時間段,峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_.
【答案】(1) (2)昆蟲密度的最小值為0,出現(xiàn)最小值的時間為和 (3)至至
【解析】
(1)由題意得,解出即可;
(2)將看成一個整體,將函數(shù)轉(zhuǎn)化為二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性即可得出結(jié)論;
(3)解不等式即可得出結(jié)論.
解:(1)因為它是一個連續(xù)不間斷的函數(shù),所以當(dāng)時,
得到,即;
(2)當(dāng)時,,,
則當(dāng)時,達(dá)到最小值0,
,解得,
所以在和時,昆蟲密度達(dá)到最小值,最小值為0;
(3)時,令,
得,即,
即,即,解得,
,
因為,令得,
令得所以,
所以,在至至內(nèi),峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項活動,問2名學(xué)生中有1名男生的概率是多少?
(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為(-3,3),
滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(x-y),當(dāng)x<0時,f(x)>0,f(1)=-2.
(1)求f(2)的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“整治散落污染企業(yè)”等.下表是該市2016年11月份和2017年11月份的空氣質(zhì)量指數(shù)()(指數(shù)越小,空氣質(zhì)量越好)統(tǒng)計表.根據(jù)表中數(shù)據(jù)回答下列問題:
(1)將2017年11月的空氣質(zhì)量指數(shù)數(shù)據(jù)用該天的對應(yīng)日期作為樣本編號,再用系統(tǒng)抽樣方法從中抽取6個數(shù)據(jù),若在2017年11月16日到11月20日這五天中用簡單隨機抽樣抽取到的樣本的編號是19號,寫出抽出的樣本數(shù)據(jù);
(2)根據(jù)《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定(試行)》規(guī)定:當(dāng)空氣質(zhì)量指數(shù)為(含50)時,空氣質(zhì)量級別為一級,用從(1)中抽出的樣本數(shù)據(jù)中隨機抽取三天的數(shù)據(jù),空氣質(zhì)量級別為一級的天數(shù)為,求的分布列及數(shù)學(xué)期望;
(3)求出這兩年11月空氣質(zhì)量指數(shù)為一級的概率,你認(rèn)為該市2017年初開始采取的這些大氣污染治理措施是否有效?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項能力(指標(biāo)值滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,圖中點A表示甲的創(chuàng)造力指標(biāo)值為4,點B表示乙的空間能力指標(biāo)值為3,則下面敘述正確的是
A. 乙的記憶能力優(yōu)于甲的記憶能力
B. 乙的創(chuàng)造力優(yōu)于觀察能力
C. 甲的六大能力整體水平優(yōu)于乙
D. 甲的六大能力中記憶能力最差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1當(dāng)時,求不等式的解集;
2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足 (),數(shù)列滿足 (),且
(1)證明數(shù)列為等差數(shù)列,并求數(shù)列和的通項公式;
(2)若,求數(shù)列的前項和;
(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com