【題目】下列命題中正確的是( 。
A. 如果兩條直線都平行于同一個平面,那么這兩條直線互相平行
B. 過一條直線有且只有一個平面與已知平面垂直
C. 如果一條直線平行于一個平面內(nèi)的一條直線,那么這條直線平行于這個平面
D. 如果兩條直線都垂直于同一平面,那么這兩條直線共面
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=﹣x2的單調(diào)遞增區(qū)間為( )
A.(﹣∞,0]
B.[0,+∞)
C.(0,+∞)
D.(﹣∞,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息,設(shè)定原信息為a0a1a2 , ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1 , 其中h0=a0⊕a1 , h1=h0⊕a2 . ⊕運算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息一定有誤的是( )
A.10111
B.01100
C.11010
D.00011
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用秦九韶算法求多項式f(x)=2x5+4x4-2x3+8x2+7x+4當(dāng)x=3的值,寫出每一步的計算表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:已知二次函數(shù)y=ax2+bx+c的圖象過點(1,0)…求證:這個二次函數(shù)的圖象關(guān)于直線x=2對稱。根據(jù)現(xiàn)有信息,題中的二次函數(shù)不一定具有的性質(zhì)是( )
A. 在x軸上截得的線段的長度是2
B. 與y軸交于點(0,3)
C. 頂點是(2,2)
D. 過點(3,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在英語中不同字母出現(xiàn)的頻率彼此不同且相差很大,但同一個字母的使用頻率相當(dāng)穩(wěn)定,有人統(tǒng)計了40多萬個單詞中5個元音字母的使用頻率,結(jié)果如下表所示:
元音字母 | A | E | I | O | U |
頻率 | 7.88% | 12.68% | 7.07% | 7.76% | 2.80% |
(1)從一本英文(小說類)書里隨機選一頁,統(tǒng)計在這一頁里元音字母出現(xiàn)的頻率;
(2)將你統(tǒng)計得出的頻率與上表中的頻率進行比較,結(jié)果是否比較接近?你認(rèn)為存在差異的原因是什么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù),若同時滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使在上的值域為,則把叫閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)已知是正整數(shù),且定義在的函數(shù)是閉函數(shù),求正整數(shù)的最小值,及此時實數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列中,,,且成等差數(shù)列,成等比數(shù)列,。
(Ⅰ)(ⅰ)求證:數(shù)列為等差數(shù)列;
(ⅱ)求數(shù)列的通項公式。
(Ⅱ)設(shè)數(shù)列的前項和為,證明:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,其離心率為。
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右頂點為,直線交于兩點(異于點),若在上,且,,證明直線過定點。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com