【題目】圓心在曲線(xiàn)上,與直線(xiàn)x+y+1=0相切,且面積最小的圓的方程為( 。

A. x2+y-12=2B. x2+y+12=2C. x-12+y2=2D. x+12+y2=2

【答案】A

【解析】

設(shè)與直線(xiàn)x+y+10平行與曲線(xiàn)相切的直線(xiàn)方程為x+y+m0,切點(diǎn)為Px0,y0),x0>﹣1,解得x0,可得切點(diǎn)P即圓心,利用點(diǎn)到直線(xiàn)的距離公式可得半徑r,求解即可.

設(shè)與直線(xiàn)x+y+10平行與曲線(xiàn)相切的直線(xiàn)方程為x+y+m0

切點(diǎn)為Px0,y0).x00

y′=﹣,∴﹣=﹣1,x0>﹣1,解得x00.可得切點(diǎn)P0,1,

兩條平行線(xiàn)之間的距離為面積最小的圓的半徑;∴半徑r

∴圓心在曲線(xiàn)上,且與直線(xiàn)x+y+10相切的面積最小的圓的方程為:x2+y122

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦曼德?tīng)柌剂_在20世紀(jì)70年代創(chuàng)立的一門(mén)新的數(shù)學(xué)學(xué)科.它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個(gè)樹(shù)形圖:

易知第三行有白圈5個(gè),黑圈4個(gè).我們采用坐標(biāo)來(lái)表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的坐標(biāo),則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

保費(fèi)(元)

隨機(jī)調(diào)查了該險(xiǎn)種的400名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:

出險(xiǎn)次數(shù)

0

1

2

3

頻數(shù)

280

80

24

12

4

該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:

出險(xiǎn)序次

1

2

3

4

5次及以上

賠付金額(元)

0

將所抽樣本的頻率視為概率.

(Ⅰ)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;

(Ⅱ)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)3次,則可獲得賠付元;若續(xù)保人在本年度內(nèi)出險(xiǎn)6次,則可獲得賠付元;依此類(lèi)推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;

(Ⅲ)續(xù)保人原定約了保險(xiǎn)公司的銷(xiāo)售人員在上午10:30~11:30之間上門(mén)簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午10:45~11:05之間,請(qǐng)問(wèn)續(xù)保人在離開(kāi)前見(jiàn)到銷(xiāo)售人員的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,,,且對(duì)時(shí),有

(Ⅰ)設(shè)數(shù)列滿(mǎn)足,,證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一矩形硬紙板材料(厚度忽略不計(jì)),一邊長(zhǎng)為6分米,另一邊足夠長(zhǎng).現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個(gè)底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計(jì)),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點(diǎn),

(1)當(dāng)長(zhǎng)為1分米時(shí),求折卷成的包裝盒的容積;

(2)當(dāng)的長(zhǎng)是多少分米時(shí),折卷成的包裝盒的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子工廠生產(chǎn)一種電子元件,產(chǎn)品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨(dú)立.現(xiàn)要檢測(cè)3000個(gè)這種電子元件,檢測(cè)的流程是:先將這3000個(gè)電子元件分成個(gè)數(shù)相等的若干組,設(shè)每組有個(gè)電子元件,將每組的個(gè)電子元件串聯(lián)起來(lái),成組進(jìn)行檢測(cè),若檢測(cè)通過(guò),則本組全部電子元件為正品,不需要再檢測(cè);若檢測(cè)不通過(guò),則本組至少有一個(gè)電子元件是次品,再對(duì)本組個(gè)電子元件逐一檢測(cè).

1)當(dāng)時(shí),估算一組待檢測(cè)電子元件中有次品的概率;

2)設(shè)一組電子元件的檢測(cè)次數(shù)為,求的數(shù)學(xué)期望;

3)估算當(dāng)為何值時(shí),每個(gè)電子元件的檢測(cè)次數(shù)最小,并估算此時(shí)檢測(cè)的總次數(shù)(提示:利用進(jìn)行估算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)區(qū)間;

2)證明:若,對(duì)任意的,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),將一個(gè)圖形繞一點(diǎn)按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn),如圖,小盧利用圖形的旋轉(zhuǎn)設(shè)計(jì)某次活動(dòng)的徽標(biāo),他將邊長(zhǎng)為a的正三角形ABC 繞其中心O逆時(shí)針旋轉(zhuǎn)到三角形A1B1C1,且.順次連結(jié)A,A1,B,B1,C,C1,A,得到六邊形徽標(biāo)AA1BB1CC1 .

(1)當(dāng)時(shí),求六邊形徽標(biāo)的面積;

(2)求六邊形徽標(biāo)的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案