【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AD=1,E為CD中點(diǎn).

(1)求證:C1D∥平面AB1E;
(2)求證:BC1⊥B1E;
(3)若AB= ,求二面角E﹣AB1﹣B的正切值.

【答案】
(1)證明:由長(zhǎng)方體性質(zhì)可知,B1C1∥BC,BC∥AD,且三者都相等

∴四邊形B1C1DA是平行四邊形,C1D∥D1A

∵C1D平面AB1E,AB1平面AB1E,

∴C1D∥平面AB1E.


(2)證明:連結(jié)B1C,由長(zhǎng)方體性質(zhì)可知,CD⊥平面BC1BC1平面BC1

∴CD⊥BC1,又AA1=AD,

∴四邊形BCC1B1是正方形,BC1⊥B1C,

又B1C∩CD=D,∴BC1⊥平面B1CEB1E平面B1CE,∴BC1⊥B1E.


(3)解:

法一:設(shè)F是線段AB中點(diǎn),連結(jié)EF

∵EF∥AD,AD⊥平面AA1B1B,

∴EF⊥平面AA1B1B,EF⊥AB1,作FG⊥AB1,EF∩FG=F,

∴AB1⊥平面EFG,AB1⊥EG,∠EGF是二面角E﹣AB1﹣B的平面角,)

直角三角形FGA中,

, ,

直角三角形EFG中,

∴二面角E﹣AB1﹣B的正切值

法二:以A為原點(diǎn),AB,AD,AA1分別為x,y,z軸建立空間坐標(biāo)系.

則A(0,0,0), , ,

, ,

設(shè)平面AB1E的法向量為

, , ,

得: ,令y=1,得 ,

設(shè)向量 的夾角為θ,則

∴二面角E﹣AB1﹣B的正切值為


【解析】(1)推導(dǎo)出四邊形B1C1DA是平行四邊形,從而C1D∥D1A,由此能證明C1D∥平面AB1E.(2)連結(jié)B1C,推導(dǎo)出CD⊥BC1 , 從而四邊形BCC1B1是正方形,BC1⊥B1C,由此能證明BC1⊥B1E.(3)法一:設(shè)F是線段AB中點(diǎn),連結(jié)EF,作FG⊥AB1 , 則∠EGF是二面角E﹣AB1﹣B的平面角,由此能求出二面角E﹣AB1﹣B的正切值.法二:以A為原點(diǎn),AB,AD,AA1分別為x,y,z軸建立空間坐標(biāo)系,利用向量法能求出二面角E﹣AB1﹣B的正切值.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.

(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);

假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過樣本估計(jì)該校全體男生的平均身高;

(Ⅲ)在樣本中,從身高在(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機(jī)上網(wǎng)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機(jī)上網(wǎng)平均所用時(shí)間的頻率分布直方圖.將時(shí)間不低于40分鐘的學(xué)生稱為“手機(jī)迷”.

(1)樣本中“手機(jī)迷”有多少人?
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機(jī)抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機(jī)迷”比“非手機(jī)迷”每月的話費(fèi)平均多40元,記被抽取的3名大學(xué)生中的“手機(jī)迷”人數(shù)為X,且設(shè)3人每月的總話費(fèi)比“非手機(jī)迷”共多出Y元,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和Y的期望EY

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , a2=4,S5=30
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 求證: ≤Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1+an=4n﹣3,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a1的值;
(2)當(dāng)a1=﹣3時(shí),求數(shù)列{an}的前n項(xiàng)和Sn
(3)若對(duì)任意的n∈N* , 都有 ≥5成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某搜索引擎廣告按照付費(fèi)價(jià)格對(duì)搜索結(jié)果進(jìn)行排名,點(diǎn)擊一次付費(fèi)價(jià)格排名越靠前被點(diǎn)擊的次數(shù)也可能會(huì)提高已知某關(guān)鍵詞被甲、乙等多個(gè)公司競(jìng)爭(zhēng),其中甲乙付費(fèi)情況與每小時(shí)點(diǎn)擊量結(jié)果繪制成如下的折線圖.

(1)試根據(jù)所給數(shù)據(jù)計(jì)算每小時(shí)點(diǎn)擊次數(shù)的均值方差并分析兩組數(shù)據(jù)的特征;

(2)若把乙公司設(shè)置的每次點(diǎn)擊價(jià)格為x,每小時(shí)點(diǎn)擊次數(shù)為,則點(diǎn)近似在一條直線附近.試根據(jù)前5次價(jià)格與每小時(shí)點(diǎn)擊次數(shù)的關(guān)系,求y關(guān)于x的回歸直線.(回歸方程系數(shù)公式,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).
(1)若不等式f(x)<1的解集為(﹣1,4),求a的值;
(2)設(shè)a≤0,解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣3,數(shù)列{bn}的前n項(xiàng)和Tn滿足 = +1且b1=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Pn;
(3)數(shù)列{Sn}中是否存在不同的三項(xiàng)Sp , Sq , Sr , 使這三項(xiàng)恰好構(gòu)成等差數(shù)列?若存在,求出p,q,r的關(guān)系;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案