【題目】如圖,在平面直角坐標系中,,分別為橢圓的左、右焦點.動直線過點,且與橢圓相交于,兩點(直線與軸不重合).
(1)若點的坐標為,求點坐標;
(2)點,設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時的直線的方程.
【答案】(1) (2)見證明;(3)
【解析】
(1)由已知得到直線l的方程,與橢圓方程聯(lián)立即可求得點B的坐標;
(2)設(shè)直線l的方程為x=ty+1,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式即可證明k1+k2=0;
(3)△AF1B的面積S|F1F2||y1﹣y2|=|y1﹣y2|.把(2)中的根與系數(shù)的關(guān)系代入,可得S.設(shè)函數(shù)f(x)=9x (x≥1),利用導(dǎo)數(shù)可得f(x)=9x在[1,+∞)上單調(diào)遞增,得到當t2+1=1,即t=0時,9(t2+1)取最小值10.由此可得直線l的方程為x=1.
(1)因為直線經(jīng)過點, ,
所以直線的方程為.
由解得或
所以.
(2)因為直線與軸不重合,故可設(shè)直線的方程為.
設(shè),.
由/span>得,
所以, ,
因為,在直線上,所以, ,
所以, ,
從而 .
因為,
所以.
(3)方法一:的面積 .
由(2)知, , ,
故
,
設(shè)函數(shù).
因為,所以在上單調(diào)遞增,
所以當,即時,取最小值10.
即當時,的面積取最大值,此時直線的方程為.
方法二:的面積 .
由(2)知, , ,
故
,
因為,所以,
所以,即時,的面積取最大值.
因此,的面積取最大值時,直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)營的某種消費品的進價為每件14元,月銷售量(百件)與每件的銷售價格(元)的關(guān)系如圖所示,每月各種開支2 000元.
(1)寫出月銷售量(百件)關(guān)于每件的銷售價格(元)的函數(shù)關(guān)系式.
(2)寫出月利潤(元)與每件的銷售價格(元)的函數(shù)關(guān)系式.
(3)當該消費品每件的銷售價格為多少元時,月利潤最大?并求出最大月利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓經(jīng)過點,其離心率為.
(1)求橢圓的方程;
(2)已知是橢圓上一點,,為橢圓的焦點,且,求點到軸的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(Ⅰ)若的圖像在處的切線經(jīng)過點(3,4),求的值;
(Ⅱ)若,求證: ;
(Ⅲ)當函數(shù)存在三個不同的零點時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動. 為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的3名同學(xué)中得分在[80,90)的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓經(jīng)過點,其離心率為.
(1)求橢圓的方程;
(2)已知是橢圓上一點,,為橢圓的焦點,且,求點到軸的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,,分別為橢圓的左、右焦點.動直線過點,且與橢圓相交于,兩點(直線與軸不重合).
(1)若點的坐標為,求點坐標;
(2)點,設(shè)直線,的斜率分別為,,求證:;
(3)求面積最大時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC—A1B1C1中,側(cè)棱與底面垂直,∠BAC=90°,AB=AC=AA1=2,點M,N分別為A1B和B1C1的中點.
(1)求異面直線A1B與NC所成角的余弦值;
(2)求A1B與平面NMC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com