精英家教網 > 高中數學 > 題目詳情

在△ABC中,A為動點,為定點且動點A的軌跡方程是的右支(),且△ABC的三個角∠A,∠B,∠C滿足                                    (    )

    A.              B.

    C.                 D.

A  解析:將軌跡方程寫成,由雙曲線定義可知

   

    由正弦定理,,將其代入上式并化簡得選A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•武漢模擬)在△ABC中,O為中線AM上的一個動點,若AM=2,則
OA
•(
OB
+
OC
)
的最小值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•閘北區(qū)三模)在△ABC中,A、B為定點,C為動點,記∠A、∠B、∠C的對邊分別為a、b、c,已知c=2,abcos2
C2
=1

(1)證明:動點C一定在某個橢圓上,并求出該橢圓的標準方程;
(2)設點O為坐標原點,過點B作直線l與(1)中的橢圓交于M,N兩點,若OM⊥ON,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A(x,y),B(-2,0),C(2,0),給出△ABC滿足的條件,就能得到動點A的軌跡方程,下表給出了一些條件及方程:
條件 方程
①△ABC周長為10;
②△ABC面積為10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
則滿足條件①、②、③的軌跡方程分別用代號表示為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,O為平面上一定點,動點P滿足
OP
=
OA
+λ(
AB
+
AC
)
,λ∈[0,+∞),則P的軌跡一定通過△ABC的(  )

查看答案和解析>>

同步練習冊答案