【題目】已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)相同.
(1)求拋物線的方程;
(2)若直線與曲線,都只有一個(gè)公共點(diǎn),記直線與拋物線的公共點(diǎn)為,求點(diǎn)的坐標(biāo).
【答案】(1);(2)或.
【解析】
(1)求出橢圓的焦點(diǎn)坐標(biāo),即得拋物線焦點(diǎn)坐標(biāo),可得拋物線方程;
(2)說明斜率不存在的直線不可能是公切線,斜率存在時(shí),設(shè)方程為,由兩個(gè)相切,即相應(yīng)的,求得,從而得切點(diǎn)坐標(biāo).
(1)由已知可得橢圓的,,所以,即,因此橢圓的右焦點(diǎn)為.
于是,由,得,拋物線的方程為.
(2)當(dāng)直線的斜率不存在時(shí),顯然不滿足題意.
當(dāng)直線的斜率不存在時(shí),顯然不滿足題意.
當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為.
聯(lián)立與,得方程組,消去,整理,得,
所以,即.(*)
聯(lián)立與,得方程組,消去,整理,得.
∴,即.(**)
由(*)和(**)得,所以
,
其對應(yīng)的.
將的值代入方程,解得,進(jìn)而.
經(jīng)檢驗(yàn)或符合題意,為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,底面為矩形,,,,、分別為線段、上一點(diǎn),且,.
(1)證明:;
(2)證明:平面,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動點(diǎn)在拋物線的準(zhǔn)線上,動點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上運(yùn)動,當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費(fèi)的一種支付方式,為調(diào)查市民使用移動支付的年齡結(jié)構(gòu),隨機(jī)對100位市民做問卷調(diào)查得到列聯(lián)表如下:
(1)將上列聯(lián)表補(bǔ)充完整,并請說明在犯錯誤的概率不超過0.10的前提下,認(rèn)為支付方式與年齡是否有關(guān)?
(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎勵,設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.
(參考公式:(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若是的一個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com