【題目】已知函數(shù)且.
(1)討論函數(shù)的極值;
(2)若,求函數(shù)在區(qū)間上的最值.
【答案】(1)當時,極大值,不存在極小值;當時,極小值,不存在極大值;
(2)當時,最大值為,最小值為;
當時,最大值為,最小值為;
當時,最大值為,最小值為;
當時,最大值為,最小值為;
當時,最大值為,最小值為.
【解析】
(1)對函數(shù)求導,利用導數(shù)分類研究函數(shù)的單調性,進而得到極值.
(2)對a分類討論,分別研究極值點與區(qū)間端點的關系,利用導數(shù)研究函數(shù)單調性極值與最值,即可得出結論.
(1)因為,
所以,
討論:
當時,令,得,令,得,
所以當時,函數(shù)在區(qū)間上單調遞增,在區(qū)間上單調遞減,
所以當時,函數(shù)存在極大值,不存在極小值
當時,令,得,令,得,
所以當時,函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,
所以當時,函數(shù)存在極小值,不存在極大值.
(2)據(jù)(1)求解知,當時,函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,
討論:
當,即時,函數(shù)在區(qū)間上單調遞減,
所以函數(shù)在區(qū)間上的最大值,最小值;
當,即時,函數(shù)在區(qū)間上單調遞增,
所以函數(shù)在區(qū)間上的最大值,最小值;
當,即時,函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,
所以函數(shù)在區(qū)間上的最小值,最大值為與的較大者.
下面比較與的大。
令,得,化簡得,
所以或.
又,
所以,
所以當時,,函數(shù)在區(qū)間上的最大值;
所以當時,,函數(shù)在區(qū)間上的最大值;
所以當時,,函數(shù)在區(qū)間上的最大值;
綜上,當時,函數(shù)在區(qū)間上的最大值為,最小值為;
當時,函數(shù)在區(qū)間上的最大值為,最小值為;
當時,函數(shù)在區(qū)間上的最大值為,最小值為;
當時,函數(shù)在區(qū)間上的最大值為,最小值為;
當時,函數(shù)在區(qū)間上的最大值為,最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點與橢圓的右焦點相同.
(1)求拋物線的方程;
(2)若直線與曲線,都只有一個公共點,記直線與拋物線的公共點為,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標準方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線、的斜率為、,當時,求此時“衛(wèi)星圓”的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)當時,證明:對;
(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
則下列判斷中正確的是( )
A.該公司2018年度冰箱類電器銷售虧損
B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C.該公司2018年度凈利潤主要由空調類電器銷售提供
D.剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題錯誤的個數(shù)是( )
①在中,是的充要條件;
②若向量滿足,則與的夾角為鈍角;
③若數(shù)列的前項和,則數(shù)列為等差數(shù)列;
④若,則“”是“”的必要不充分條件.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是等差數(shù)列,公差為,前項和為.
(1)設,,求的最大值.
(2)設,,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,平面,垂足為H,給出下面結論:
①直線與該正方體各棱所成角相等;
②直線與該正方體各面所成角相等;
③過直線的平面截該正方體所得截面為平行四邊形;
④垂直于直線的平面截該正方體,所得截面可能為五邊形,
其中正確結論的序號為( 。
A. ①③ B. ②④ C. ①②④ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com