【題目】是定義在上的奇函數(shù),當時, .

1)求的解析式;

(2)解不等式.

【答案】(1) ;(2)(,-2)(0,2)

【解析】試題分析:(1)奇函數(shù)有f(0)0,再由x<0時,f(x)=-f(x)即可求解;

2由(1)分段求解不等式,最后取并集即可.

試題解析:

1因為f(x)是定義在上的奇函數(shù),所以當x=0時,f(x)0,

x<0時,f(x)=-f(x),-x>0,又因為當x>0時,f(x).

所以當x<0時,f(x)=-f(x)=-..

綜上所述:此函數(shù)的解析式.

2f(x)<,當x=0時,f(x)<不成立;

x>0時,即<,所以<,所以>,所以3x1<8,解得x<2,

x<0時,即<,所以>,所以3x>32,所以x<2,

綜上所述解集是(,-2)∪(0,2)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有同一型號的電腦96,為了了解這種電腦每開機一次所產(chǎn)生的輻射情況,從中抽取10臺在同一條件下做開機實驗,測量開機一次所產(chǎn)生的輻射,得到如下數(shù)據(jù):

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)寫出采用簡單隨機抽樣抽取上述樣本的過程;

(2)根據(jù)樣本,請估計總體平均數(shù)與總體標準差的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四邊形OABC的四個頂點坐標分別為O(0,0)、A(6,2)、B(4,6)、C(2,6),直線ykx(<k<3)分四邊形OABC為兩部分,S表示靠近x軸一側的那一部分的面積.

(1)求Sf(k)的函數(shù)表達式;

(2)當k為何值時,直線ykx將四邊形OABC分為面積相等的兩部分?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點,試求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=2sin(3x+φ)的圖象向右平移動 個單位,得到的圖象關于y軸對稱,則|φ|的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點, 和直線相切.

1)求圓的方程;

(2)若直線經(jīng)過點并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N×
(1)設Cn=log5(an+3),求證{Cn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設bn= ,數(shù)列{bn}的前n項和為Tn , 求證:﹣ ≤Tn<﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心在直線3x+y﹣1=0上,且圓C在x軸、y軸上截得的弦長AB和MN分別為
(1)求圓C的方程;
(2)若圓心C位于第四象限,點P(x,y)是圓C內(nèi)一動點,且x,y滿足 ,求 的范圍.

查看答案和解析>>

同步練習冊答案