設(shè)是關(guān)于的方程的兩個(gè)不等實(shí)根,則過,兩點(diǎn)的直線與雙曲線的公共點(diǎn)的個(gè)數(shù)為(   )
A.0B.1C.2D.3
A

試題分析:依題意,,過兩點(diǎn)的直線斜率為,
又因?yàn)殡p曲線的漸近線方程為,
所以直線與雙曲線無交點(diǎn),故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相交于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一個(gè)圓上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:的焦點(diǎn)為F,直線與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求C的方程;
(2)過F的直線與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動(dòng)弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動(dòng)弦,滿足直線與圓相切,求半徑的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)焦點(diǎn)F的直線l與拋物線交于A、B兩點(diǎn),且|AF|=3|BF|,那么直線l的斜率為(  )
A.±
2
B.±1C.±
3
3
D.±
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知橢圓,雙曲線(a>0,b>0),若以C1的長(zhǎng)軸為直徑的圓與C2的一條漸近線交于A,B兩點(diǎn),且C1與該漸近線的兩交點(diǎn)將線段AB三等分,則C2的離心率為(     )
A.5B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別為和橢圓上的點(diǎn),則兩點(diǎn)間的最大距離是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線+=1的離心率,則的值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線兩點(diǎn),點(diǎn),問是否存在,使?若存在求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案