【題目】已知函數(shù)f(x)= 若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個(gè)零點(diǎn),則a的取值范圍是 .
【答案】{a|a<0或a>1}
【解析】解:∵g(x)=f(x)﹣b有兩個(gè)零點(diǎn),
∴f(x)=b有兩個(gè)零點(diǎn),即y=f(x)與y=b的圖像有兩個(gè)交點(diǎn),
由x3=x2可得,x=0或x=1
①當(dāng)a>1時(shí),函數(shù)f(x)的圖像如圖所示,此時(shí)存在b,滿足題意,故a>1滿足題意
②當(dāng)a=1時(shí),由于函數(shù)f(x)在定義域R上單調(diào)遞增,故不符合題意
③當(dāng)0<a<1時(shí),函數(shù)f(x)單調(diào)遞增,故不符合題意
④a=0時(shí),f(x)單調(diào)遞增,故不符合題意
⑤當(dāng)a<0時(shí),函數(shù)y=f(x)的圖像如圖所示,此時(shí)存在b使得,y=f(x)與y=b有兩個(gè)交點(diǎn)
綜上可得,a<0或a>1
所以答案是:{a|a<0或a>1}
【考點(diǎn)精析】本題主要考查了函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)的圖象( )
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)當(dāng)1<a<4時(shí),函數(shù)f(x)在[2,4]上的最小值為ln ,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為 ,圓心角為60°的扇形的弧上任取一點(diǎn)P,作扇形的內(nèi)接矩形PNMQ,使點(diǎn)Q在OA上,點(diǎn)N,M在OB上,設(shè)矩形PNMQ的面積為y,∠POB=θ.
(1)將y表示成θ的函數(shù)關(guān)系式,并寫出定義域;
(2)求矩形PNMQ的面積取得最大值時(shí) 的值;
(3)求矩形PNMQ的面積y≥ 的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)
(1)若x= ,求 與 的夾角θ;
(2)若x∈[﹣ , ],f(x)=λ 的最大值為 ,求λ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mex﹣x﹣1(其中e為自然對(duì)數(shù)的底數(shù),),若f(x)=0有兩根x1 , x2且x1<x2 , 則函數(shù)y=(e ﹣e )( ﹣m)的值域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù)x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin( x+ )是偶函數(shù);
④函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù)y=cos2x的圖象.
其中正確命題的序號(hào)是(把正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海濱浴場(chǎng)每年夏季每天的海浪高度y(米)是時(shí)間x(0≤x≤24,單位:小時(shí))的函數(shù),記作y=f(x),下表是每年夏季每天某些時(shí)刻的浪高數(shù)據(jù):
x(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)經(jīng)觀察發(fā)現(xiàn)可以用三角函數(shù)y=Acosωx+b對(duì)這些數(shù)據(jù)進(jìn)行擬合,求函數(shù)f(x)的表達(dá)式;
(2)浴場(chǎng)規(guī)定,每天白天當(dāng)海浪高度高于1.25米時(shí),才對(duì)沖浪愛好者開放,求沖浪者每天白天可以在哪個(gè)時(shí)段到該浴場(chǎng)進(jìn)行沖浪運(yùn)動(dòng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com