【題目】已知函數(shù)f(x)=mex﹣x﹣1(其中e為自然對數(shù)的底數(shù),),若f(x)=0有兩根x1 , x2且x1<x2 , 則函數(shù)y=(e ﹣e )( ﹣m)的值域為 .
【答案】(﹣∞,0)
【解析】解:由題意f函數(shù)f(x)=mex﹣x﹣1,(x)=0有兩根x1 , x2且x1<x2 , , . 相減可得m( )=x2﹣x1 ,
即有y= ﹣m( )= ﹣(x2﹣x1)
= ﹣(x2﹣x1),
令x2﹣x1=t(t>0), ﹣t(t>0),
又g′(t)= <0,
∴g(t)在(0,+∞)上單調(diào)遞減,
∴g(t)<g(0)=0,
∴g(t)∈(﹣∞,0),
∴y=( )( ﹣m)的值域為(﹣∞,0);
所以答案是:(﹣∞,0).
【考點精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)底數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(3)已知,若函數(shù)對任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)
①若直線,則在平面內(nèi),一定不存在與直線平行的直線.
②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi),一定存在與直線垂直的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 若存在實數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個零點,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F1,F2分別是橢圓的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)已知△AF1B的面積為,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求的值;
(Ⅱ)若函數(shù)存在極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個最大值和一個最小值,且當(dāng)x=π時,y有最大值3,當(dāng)x=6π時,y有最小值﹣3.
(1)求此函數(shù)解析式;
(2)寫出該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實數(shù)m,滿足不等式Asin( )>Asin( )?若存在,求出m值(或范圍),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com