【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AC⊥BC,AC=BC= AA1=2,D是AC的中點.

(1)求證:B1C∥平面A1BD;
(2)求直線AC與平面A1BD所成角的正弦值.

【答案】
(1)證明:連接AB1交A1B于O,則O為AB1的中點,連接OD,

又D是AC的中點,∴OD∥B1C,

又OD平面A1BD,B1C平面A1BD,

∴B1C∥平面A1BD;


(2)解:∵AA1⊥底面ABC,AC⊥BC,

∴分別以CA、CB、CC1所在直線為x、y、z軸建立空間直角坐標系,

∵AC=BC= AA1=2,

∴C(0,0,0),A(2,0,0),D(1,0,0),B(0,2,0),

A1(2,0,4),

, , ,

設(shè)平面A1BD的一個法向量為 ,

,取z=﹣1,得 ,

∴直線AC與平面A1BD所成角的正弦值為sinθ=| |=| |=


【解析】(1)連接AB1交A1B于O,則O為AB1的中點,連接OD,結(jié)合D是AC的中點,可得OD∥B1C,再由線面平行的判定得B1C∥平面A1BD;(2)由AA1⊥底面ABC,AC⊥BC,分別以CA、CB、CC1所在直線為x、y、z軸建立空間直角坐標系,求出所用點的坐標,進一步求出 及平面A1BD的一個法向量的坐標,由兩向量所成角的余弦值可得直線AC與平面A1BD所成角的正弦值.
【考點精析】利用直線與平面平行的判定和空間角的異面直線所成的角對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】不等式(x+5)(3﹣2x)≤6的解集是(
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兒童乘坐火車時,若身高不超過1.1m,則不需買票;若身高超過1.1m但不超過1.4m,則需買半票;若身高超過1.4m,則需買全票.試設(shè)計一個買票的算法,并寫出相應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解學校食堂的服務(wù)情況,隨機調(diào)查了50名就餐的教師和學生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為[40,50),[50,60),…,[90,100].
(1)求頻率分布直方圖中a的值;
(2)從評分在[40,60)的師生中,隨機抽取2人,求此人中恰好有1人評分在[40,50)上的概率;
(3)學校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進行內(nèi)部整頓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓C: + =1(a>b>0)過點(2,0),離心率為
(1)求C的方程;
(2)過點(1,0)且斜率為1的直線l與橢圓C相交于A,B兩點,求AB的中點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足下列條件的有兩個的是(
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c<0的解集為({﹣∞,﹣1})∪( ,+∞),則不等式cx2﹣bx+a<0的解集為(
A.(﹣1,2)
B.(﹣∞,﹣1)∪(2,+∞)
C.(﹣2,1)
D.(﹣∞,﹣2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);
③求鍵盤所輸入的兩個數(shù)的最小數(shù);
④求函數(shù)當自變量取x0時的函數(shù)值.
其中不需要用條件語句來描述算法的問題有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.

查看答案和解析>>

同步練習冊答案