【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點.
(1)求橢圓E 的標(biāo)準(zhǔn)方程;
(2)已知圖中四邊形ABCD 是矩形,且BC=4,點M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點P .①若M,N分別是BC,CD的中點,證明:點P在橢圓E上;②若點P在橢圓E上,證明:為定值,并求出該定值.
【答案】(1) ;(2)①證明見解析;②證明見解析
【解析】
(1)由求得,進(jìn)而求得橢圓的方程;
(2)①分別求得,坐標(biāo),再求得直線與直線方程,即可求得交點坐標(biāo),進(jìn)而得證;②分別設(shè)直線的方程為,直線的方程為,求得點,坐標(biāo),則,利用斜率公式求證即可
(1)由題,,則,所以,
所以橢圓的標(biāo)準(zhǔn)方程為:
(2)證明:①由(1)可得,,
因為,且四邊形是矩形,
所以,,
因為點分別是的中點,
所以,,
則直線為:,即,
直線為:,即,
所以,解得,即
因為,
所以點在橢圓上
②設(shè)直線的方程為,
令,得,
設(shè)直線的方程為,
令,得,
,
設(shè),則,
,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有一家大型共享汽車公司,在市場上分別投放了黃、藍(lán)兩種顏色的汽車,已知黃、藍(lán)兩種顏色的汽車的投放比例為.監(jiān)管部門為了了解這兩種顏色汽車的質(zhì)量,決定從投放到市場上的汽車中隨機(jī)抽取5輛汽車進(jìn)行試駕體驗,假設(shè)每輛汽車被抽取的時能性相同.
(1)求抽取的5輛汽車中恰有2輛是藍(lán)色汽車的概率;
(2)在試駕體驗過程中,發(fā)現(xiàn)藍(lán)色汽車存在一定質(zhì)量問題,監(jiān)管部門決定從投放的汽車中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測,并規(guī)定:若抽取的是黃色汽車.則將其放回市場,并繼續(xù)隨機(jī)地抽取下一輛汽車;若抽到的是藍(lán)色汽車,則抽樣結(jié)束;并規(guī)定抽樣的次數(shù)不超過次,在抽樣結(jié)束時,若已取到的黃色汽車數(shù)以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個矩形,圓弧所在圓的圓心為O,經(jīng)測量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧上.設(shè),矩形的面積為S.
(1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;
(2)求為何值時,矩形的面積S最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實數(shù)a,若不能,請說明理由;
(Ⅱ)求最大的整數(shù),使得對任意,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動點.
(1)證明: 平面;
(2)若四邊形為正方形,且, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,長軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過點的直線與橢圓交于,兩點,若點滿足,求證:由點 構(gòu)成的曲線關(guān)于直線對稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com