【題目】某校為提高課堂教學(xué)效果,最近立項了市級課題《高效課堂教學(xué)模式及其運用》,其中王老師是該課題的主研人之一,為獲得第一手?jǐn)?shù)據(jù),她分別在甲、乙兩個平行班采用“傳統(tǒng)教學(xué)”和“高效課堂”兩種不同的教學(xué)模式進(jìn)行教學(xué)實驗.為了解教改實效,期中考試后,分別從兩個班級中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計,作出如圖所示的莖葉圖,成績大于分為“成績優(yōu)良”.

1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

2)從甲、乙兩班個樣本中,成績在分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級的概率.

附:,其中

【答案】1)列聯(lián)表見解析,能在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”;(2.

【解析】

1)根據(jù)莖葉圖中的數(shù)據(jù)結(jié)合題中的信息完善列聯(lián)表,計算出的觀測值,然后比較的觀測值與的大小,即可對題中結(jié)論的正誤進(jìn)行判斷;

2)將甲班成績在分以下的個同學(xué)分別記為、、,乙班成績在分以下的各同學(xué)分別記為、,列舉出所有的基本事件,并確定事件“所抽取的人來自不同班級”所包含的基本事件數(shù),利用古典概型的概率公式可計算出所求事件的概率.

1)由題意可知,列聯(lián)表如下:

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

,

因此,能在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”;

2)將甲班成績在分以下的個同學(xué)分別記為、、,乙班成績在分以下的各同學(xué)分別記為,

從這名同學(xué)中任意抽取人,所有的基本事件為:、、、、、、、、,共.

其中,事件“所抽取的人來自不同班級”所包含的基本事件有:、、、、、,共.

因此,所抽取的人來自不同班級的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東方商店欲購進(jìn)某種食品(保質(zhì)期兩天),此商店每兩天購進(jìn)該食品一次(購進(jìn)時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進(jìn)價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:

(視樣本頻率為概率)

(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望

(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進(jìn)份,哪一種得到的利潤更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在梯形中,,,,過,分別作的垂線,垂足分別為,,已知,,將梯形沿同側(cè)折起,使得平面平面,平面平面,得到圖2.

(1)證明:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,證明:;

(2)當(dāng)時,討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列滿足,,數(shù)列滿足.

1)求數(shù)列,的通項公式;

2)令,求數(shù)列的前項和;

3)若,且對所有的正整數(shù)都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值點;

2)若恒成立,求的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過頂點的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)若點在橢圓上且滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中

1)求的單調(diào)區(qū)間;

2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角A,B,C所對邊分別為ab,c,已知

(1)求A

(2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案