【題目】已知函數(shù)滿足:①定義為;②.
(1)求的解析式;
(2)若;均有成立,求的取值范圍;
(3)設(shè),試求方程的解.
【答案】(1)(2)(3),、,、
【解析】
(1)利用構(gòu)造方程組法即可求得的解析式;
(2)根據(jù)不等式,構(gòu)造函數(shù)與.根據(jù)不等式恒成立可知滿足.求得.通過判斷的符號(hào)可判斷的單調(diào)性,由其單調(diào)性可得,進(jìn)而可知為單調(diào)遞增函數(shù),即可求得.再根據(jù)及二次函數(shù)性質(zhì),可得的取值范圍;
(3)根據(jù)的解析式,畫出函數(shù)圖像.并令,則方程變?yōu)?/span>.解得的值.即可知、及.結(jié)合函數(shù)圖像及解析式,即可求得對(duì)應(yīng)方程的解.
(1),…①
所以即…②
由①②聯(lián)立解得:.
(2)設(shè),
,
依題意知:當(dāng)時(shí),
又在上恒成立,
所以在上單調(diào)遞減
在上單調(diào)遞增,
,
解得:
實(shí)數(shù)的取值范圍為.
(3)的圖象如圖所示:
令,則
當(dāng)時(shí)有1個(gè)解,
當(dāng)時(shí)有2個(gè)解:、,
當(dāng)時(shí)有3個(gè)解:、.
故方程的解分別為:
,、,、
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)半圓中有兩個(gè)互切的內(nèi)切半圓,由三個(gè)半圓弧圍成曲邊三角形,作兩個(gè)內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線型公路l,湖上有橋AB(AB是圓O的直徑).規(guī)劃在公路l上選兩個(gè)點(diǎn)P、Q,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.已知點(diǎn)A、B到直線l的距離分別為AC和BD(C、D為垂足),測(cè)得AB=10,AC=6,BD=12(單位:百米).
(1)若道路PB與橋AB垂直,求道路PB的長(zhǎng);
(2)在規(guī)劃要求下,P和Q中能否有一個(gè)點(diǎn)選在D處?并說明理由;
(3)對(duì)規(guī)劃要求下,若道路PB和QA的長(zhǎng)度均為d(單位:百米).求當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當(dāng)時(shí),.則方程的根的個(gè)數(shù)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:()的離心率為,點(diǎn)在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點(diǎn),且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得?若存在,求C的坐標(biāo):若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)為( )
①“為真”是“為真”的充分不必要條件;
②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;
③在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件“”發(fā)生的概率為
④已知隨機(jī)變量服從正態(tài)分布,且,則.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行自主招生測(cè)試,報(bào)考學(xué)生有500人,其中男生300人,女生200人,為了研究學(xué)生的成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們測(cè)試的分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成4組:,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖可以估計(jì)女生測(cè)試成績(jī)的平均值為103.5,請(qǐng)你估計(jì)男生測(cè)試成績(jī)的平均值,由此推斷男、女生測(cè)試成績(jī)的平均水平的高低;
(Ⅱ)若規(guī)定分?jǐn)?shù)不小于110分的學(xué)生為“優(yōu)秀生”,請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀生與性別有關(guān)”?
優(yōu)秀生 | 非優(yōu)秀生 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式:,.
參考數(shù)據(jù):
P() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn).
(1)求曲線的長(zhǎng)度;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com