【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的方程為:,過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),求的值,并求定點(diǎn)到兩點(diǎn)的距離之積.
【答案】(1),(2),
【解析】
(1)利用消參法可得直線(xiàn)的普通方程,根據(jù)互化公式可得曲線(xiàn)的直角坐標(biāo)方程;
(2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的方程,利用參數(shù)的幾何意義化簡(jiǎn)計(jì)算即可.
(1)由(為參數(shù)),消去參數(shù),得直線(xiàn)的普通方程,
由,即,得曲線(xiàn)的直角坐標(biāo)方程為.
(2)將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程中,得
,整理得,則,,
由題意,,
定點(diǎn)到,兩點(diǎn)的距離之積為.
所以,的值為,定點(diǎn)到,兩點(diǎn)的距離之積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),下列說(shuō)法正確的是__________.的值域是;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根;若函數(shù)有三個(gè)零點(diǎn)時(shí),則;經(jīng)過(guò)有三條直線(xiàn)與相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶(hù)之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立.
(1)記20件產(chǎn)品中恰有2件不合格品的概率為,求的最大值點(diǎn).
(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶(hù)手中,則工廠(chǎng)要對(duì)每件不合格品支付25元的賠償費(fèi)用.
(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;
(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形是直角梯形,,,,,為線(xiàn)段的中點(diǎn),平面,,是線(xiàn)段的中點(diǎn).
(1)求證:∥平面;
(2)求直線(xiàn)與平面所成的角的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線(xiàn)上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.類(lèi)比等差數(shù)列的定義給出“等和數(shù)列”的定義:_____________________________________;已知數(shù)列是等和數(shù)列,且,公和為,那么的值為____________.這個(gè)數(shù)列的前項(xiàng)和的計(jì)算公式為_____________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列:,,,…,為1,2,3,…,的一個(gè)排列,若互不相同,則稱(chēng)數(shù)列具有性質(zhì).
(1)若,且,寫(xiě)出具有性質(zhì)的所有數(shù)列;
(2)若數(shù)列具有性質(zhì),證明:;
(3)當(dāng)時(shí),分別判斷是否存在具有性質(zhì)的數(shù)列?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線(xiàn)AC的長(zhǎng)為10cm,容器Ⅱ的兩底面對(duì)角線(xiàn)EG,E1G1的長(zhǎng)分別為14cm和62cm. 分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm. 現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒(méi)入水中部分的長(zhǎng)度;
(2)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒(méi)入水中部分的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com