【題目】已知函數(shù),下列說法正確的是__________.的值域是;當時,方程有兩個不等實根;若函數(shù)有三個零點時,則;經(jīng)過有三條直線與相切.
【答案】①②③
【解析】
①:結合導數(shù),用函數(shù)的單調(diào)性和奇偶性,求得的值域;②利用導數(shù),證得方程有兩個不等實根;③根據(jù)為偶函數(shù),故可先考慮的情況,再由對稱性得到的情況.當時,首先確定是函數(shù)的零點,令,分離常數(shù),利用導數(shù)求得的取值范圍.再根據(jù)對稱性,求得的取值范圍.④利用導數(shù),求得過的切線的條數(shù).
①函數(shù)的定義域為,且,所以為偶函數(shù),圖像關于軸對稱.當時,,,.令解得,所以在上遞減,在上遞增,
②顯然,是方程的根.方程可化為.當時,即.根據(jù)①的分析,結合圖像可知,當時與的圖像沒有公共點.故只需考慮的情況.由得,即.構造函數(shù),,,令,解得.所以在上遞減,在上遞增,且,所以存在,使得.故在上遞減,在上遞增.,所以存在,使.綜上所述,當時,方程有兩個不等實根成立,故②正確.
③為偶函數(shù),故可先考慮的情況.當時,函數(shù)為,故方程有三個不相等的實數(shù)根.首先是方程的根.
先證:令,,,令解得.所以在上遞減,在上遞增.,當,.若,即,則在區(qū)間上先減后增,在區(qū)間上至多只有兩個零點,不符合題意.故.
故下證:當時,由得有兩個不同的實數(shù)根.構造函數(shù),.令,,,所以在上單調(diào)遞增,所以當時,.所以由可知在上遞減,在上遞增,所以在處取得極小值也即是最小值,所以.
綜上所述,的取值范圍是.由于為偶函數(shù),根據(jù)函數(shù)圖像的對稱性可知的取值范圍是.故③正確.
④當時,設經(jīng)過點的切線的切點為,,,故切線方程為,將代入上式得,化簡得.令,,,所以在上單調(diào)遞增.所以方程解得或.所以當時,有兩條切線.根據(jù)為偶函數(shù),所以當時,也有兩條切線方程. 所以經(jīng)過有四條直線與相切,④錯誤.
特別的,當時,,,即當時,在處的切線的斜率為.當時,,即當時,在處的切線的斜率為.
故答案為:①②③
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,是過點P(1,1),傾斜角為的直線,以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)寫出直線的參數(shù)方程及曲線C的直角坐標方程;
(2)直線L與曲線C交于AB兩點,若弦AB被點P平分時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,;當兩條棱平行時,的值為兩條棱之間的距離;當兩條棱異面時,.
(1)求概率;
(2)求的分布列,并求其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和,已知,.
(1)求證:數(shù)列為等差數(shù)列,并求出其通項公式;
(2)設,又對一切恒成立,求實數(shù)的取值范圍;
(3)已知為正整數(shù)且,數(shù)列共有項,設,又,求的所有可能取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在軸上的橢圓上的點到兩個焦點的距離和為10,橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)過橢圓的右焦點作與軸垂直的直線,直線上存在、兩點滿足,求△面積的最小值;
(3)若與軸不垂直的直線交橢圓于、兩點,交軸于定點,線段的垂直平分線交軸于點,且為定值,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中,直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)求直線l的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點E作與直線l的夾角為的直線,交l于點F,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程為ρ=4cosθ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)設曲線C與直線l相交于P,Q兩點,以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、、、分別賦分分、分、分、分,為了讓學生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如圖所示,小明同學在這次考試中物理分,化學多分.
(1)采用賦分制后,求小明物理成績的最后得分;
(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科從化學、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為:,過點的直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于、兩點,求的值,并求定點到兩點的距離之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com