【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績(jī)從高到低排列,按照占總體、分別賦分分、分、分、分,為了讓學(xué)生們體驗(yàn)賦分制計(jì)算成績(jī)的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(jī)(滿分分)頻率分布直方圖,化學(xué)成績(jī)(滿分分)莖葉圖如圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)采用賦分制后,求小明物理成績(jī)的最后得分;

(2)若小明的化學(xué)成績(jī)最后得分為分,求小明的原始成績(jī)的可能值;

(3)若小明必選物理,其他兩科從化學(xué)、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

【答案】(1)分;(2);(3).

【解析】

1)根據(jù)物理分判斷所處的百分比,根據(jù)百分比確定分?jǐn)?shù);(2)先排除賦分分的分?jǐn)?shù),然后利用百分比計(jì)算賦分分的人數(shù),結(jié)合數(shù)據(jù),給出可能的取值;(3)采用列舉法以及古典概型的概率計(jì)算公式來求解.

(1)∵,,

∴此次考試物理成績(jī)落在內(nèi)的頻率依次為,,頻率之和為,且小明的物理成績(jī)?yōu)?/span>分,大于分,處于前,

∴小明物理成績(jī)的最后得分為.

(2)因?yàn)?/span>名學(xué)生中,賦分分的有人,這六人成績(jī)分別為,,,;賦分分的有人,其中包含多分的共人,多分的有人,分?jǐn)?shù)分別為,,;因?yàn)樾∶鞯幕瘜W(xué)成績(jī)最后得分為分,且小明化學(xué)多分,所以小明的原始成績(jī)的可能值為,,.

(3)記物理、化學(xué)、生物、歷史、地理、政治依次為,,,,小明的所有可能選法有,,,,

,,共10種,

其中包括化學(xué)的有,,共4種,

∵若小明必選物理,其他兩科在剩下的五科中任選,所選科目包括化學(xué)的概率為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長(zhǎng)為的的菱形, ,四邊形是矩形,平面平面, , 分別是的中點(diǎn).

)求證:平面平面;

)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,當(dāng)時(shí),若內(nèi)恒成立,則稱點(diǎn)為函數(shù)的“平衡點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“平衡點(diǎn)”?若存在,請(qǐng)求出“平衡點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,且,ABE的中點(diǎn)沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)的中點(diǎn).

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上滿足,且.設(shè),,則當(dāng)時(shí),下列不等式成立的是( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點(diǎn),設(shè)點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1xy+30l2x+y+10的交點(diǎn)為A,過A且與x軸和y軸都相切的圓的方程為_____,動(dòng)點(diǎn)B,C分別在l1l2上,且|BC|2,則過A,B,C三點(diǎn)的動(dòng)圓掃過的區(qū)域的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極標(biāo)坐系中,已知圓的圓心,半徑

(1)求圓的極坐標(biāo)方程;

(2)若,直線的參數(shù)方程為t為參數(shù)),直線交圓兩點(diǎn),求弦長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案