【題目】觀察下列事實:|x|+|y|=1的不同整數(shù)解(x,y)有4個,|x|+|y|=2的不同整數(shù)解(x,y)有8個,|x|+|y|=3的不同整數(shù)解(x,y)有12個,…,則|x|+|y|=15的不同整數(shù)解(x,y)的個數(shù)為(
A.64
B.60
C.56
D.52

【答案】B
【解析】解:觀察可得不同整數(shù)解的個數(shù)4,8,12,…
可以構(gòu)成一個首項為4,公差為4的等差數(shù)列,
通項公式為an=4n,則所求為第15項,所以a15=60.
故選B.
【考點精析】通過靈活運用歸納推理,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三個數(shù)a=0.312 , b=log20.31,c=20.31之間的大小關(guān)系為(
A.a<c<b
B.a<b<c
C.b<a<c
D.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex﹣x﹣1.(其中e為自然對數(shù)的底數(shù))
若曲線y=f(x)過點P(0,1),求曲線y=f(x)在點P(0,1)處的切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a=0.60.6 , b=0.61.5 , c=1.50.6 , 則a,b,c的大小關(guān)系是(
A.a<b<c
B.a<c<b
C.b<a<c
D.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若全集U={1,2,3,4,5,6},M={1,4,5},N={2,3},則集合(UN)∩M=( 。
A.{2,3}
B.{2,3,5}
C.{1,4}
D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若過點A(2,m)可作函數(shù)f(x)=x3﹣3x對應(yīng)曲線的三條切線,則實數(shù)m的取值范圍( 。
A.[﹣2,6]
B.(﹣6,1)
C.(﹣6,2)
D.(﹣4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若奇函數(shù)在區(qū)間[3,7]上遞增且最小值為5,則f(x)在[﹣7,﹣3]上為(
A.遞增且最小值為﹣5
B.遞增且最大值為﹣5
C.遞減且最小值為﹣5
D.遞減且最大值為﹣5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x∈R|x﹣1>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},則“x∈A∪B“是“x∈C“的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=5x+b的圖象經(jīng)過第一、三、四象限,則實數(shù)b的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案