【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬元)對年銷售量y(單位:萬件)的影響,統(tǒng)計了近10年投入的年研發(fā)費(fèi)用x,與年銷售量的數(shù)據(jù),得到散點(diǎn)圖如圖所示:
(1)利用散點(diǎn)圖判斷,和(其中 為大于0的常數(shù))哪一個更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).
(2)對數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計量的值如下表:
15 | 15 | 28.25 | 56.5 |
根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;
(3)已知企業(yè)年利潤z(單位:千萬元)與,的關(guān)系為(其中…),根據(jù)(2)的結(jié)果,要使得該企業(yè)下年的年利潤最大,預(yù)計下一年應(yīng)投入多少研發(fā)費(fèi)用?
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為,
【答案】(1) 選擇回歸類型更適合;(2) (3) 預(yù)計下一年要投入0.4億元的研發(fā)費(fèi)用
【解析】
(1)由題意結(jié)合散點(diǎn)圖選擇合適的回歸方程即可;(2)結(jié)合所給的數(shù)據(jù)求解非線性回歸方程即可;(3)結(jié)合(2)中求得的回歸方程確定利潤函數(shù),結(jié)合二次函數(shù)研究函數(shù)的最值即可.
(1)由散點(diǎn)圖知,選擇回歸類型更適合
(2)對兩邊取對數(shù),得,即
由表中數(shù)據(jù)可得,
令,則,即
所以年銷售量y和年研發(fā)費(fèi)用x的回歸方程為
(3)由(2)知,
令 則,當(dāng)時取得最小值
所以當(dāng)千萬元時,年利潤z取最大值且最大值為千萬元億元
故要使年利潤取最大值,預(yù)計下一年要投入0.4億元的研發(fā)費(fèi)用
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為二次函數(shù),且.
(1)求f(x)的表達(dá)式;
(2)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性及極值;
(Ⅱ)若不等式在內(nèi)恒成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】麻團(tuán)又叫煎堆,呈球形,華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團(tuán),它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 ,則一個麻團(tuán)的體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為的橢圓關(guān)于直線對稱的圖形過坐標(biāo)原點(diǎn).
是橢圓的左頂點(diǎn),斜率為的直線交于,兩點(diǎn),點(diǎn)在上,.
(Ⅰ)當(dāng)時,求的面積;
(Ⅱ)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)有著輝煌和燦爛的歷史,成書于公元一世紀(jì)的數(shù)學(xué)著作《九章算術(shù)》中有一道關(guān)于數(shù)列的題目:“今有良馬與駑馬發(fā)長安至齊。齊去長安三千里。良馬初日行一百九十三里,日增十三里。駑馬初日行九十七里,日減半里。良馬先至齊,復(fù)還迎駑馬。問幾何日相逢及各行幾何?”根據(jù)你所學(xué)數(shù)列知識和數(shù)學(xué)運(yùn)算技巧計算兩馬相逢時是在出發(fā)后的第_______天(寫出整數(shù)即可).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬制造一個如圖所示的容積為36π立方米的有蓋圓錐形容器.
(1)若該容器的底面半徑為6米,求該容器的表面積;
(2)當(dāng)容器的高為多少米時,制造該容器的側(cè)面用料最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com