【題目】已知橢圓 ,離心率 ,它的長(zhǎng)軸長(zhǎng)等于圓x2+y2﹣2x+4y﹣3=0的直徑.
(1)求橢圓 C的方程;
(2)若過(guò)點(diǎn) 的直線(xiàn)l交橢圓C于A,B兩點(diǎn),是否存在定點(diǎn)Q,使得以AB為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn),若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由?

【答案】
(1)

解:圓方程x2+y2﹣2x+4y﹣3=0化為(x﹣1)2+(y+2)2=8,則圓的直徑為 ,∴ ,

得:c=2,b2=a2﹣c2=8﹣4=4,

以橢圓C的方程:


(2)

解:過(guò)點(diǎn) 作斜率為0和斜率不存在的直線(xiàn)l交橢圓C的兩個(gè)交點(diǎn)為直徑的圓分別為 和x2+y2=4,這兩個(gè)圓的交點(diǎn)為(0,2).

所以猜想存在點(diǎn)Q(0,2),使得以 AB為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn).

設(shè)直線(xiàn) AB的方程為 ,與橢圓 ,

聯(lián)立方程組得: ,

設(shè)交點(diǎn)A(x1,y1),B(x2,y2)得, ,

=

所以 ,

即以 AB為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn)Q(0,2)


【解析】(1)求出圓的直徑為 ,推出a,由離心率求解c,然后求解橢圓C的方程.(2)猜想存在點(diǎn)Q(0,2),使得以 AB為直徑的圓經(jīng)過(guò)這個(gè)定點(diǎn).設(shè)直線(xiàn) AB的方程為 ,與橢圓 ,聯(lián)立方程組得: ,設(shè)交點(diǎn)A(x1 , y1),B(x2 , y2),利用韋達(dá)定理,向量的數(shù)量積轉(zhuǎn)化求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解本校學(xué)生的身體素質(zhì)情況,決定在全校的1000名男生和800名女生中按分層抽樣的方法抽取45名學(xué)生對(duì)他們課余參加體育鍛煉時(shí)間進(jìn)行問(wèn)卷調(diào)查,將學(xué)生課余參加體育鍛煉時(shí)間的情況分三類(lèi):A類(lèi)(課余參加體育鍛煉且平均每周參加體育鍛煉的時(shí)間超過(guò)3小時(shí)),B類(lèi)(課余參加體育鍛煉但平均每周參加體育鍛煉的時(shí)間不超過(guò)3小時(shí)),C類(lèi)(課余不參加體育鍛煉),調(diào)查結(jié)果如表:

A類(lèi)

B類(lèi)

C類(lèi)

男生

18

x

3

女生

10

8

y


(1)求出表中x、y的值;
(2)根據(jù)表格統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為課余參加體育鍛煉且平均每周參加體育鍛煉的時(shí)間超過(guò)3小時(shí)與性別有關(guān);

男生

女生

總計(jì)

A類(lèi)

B類(lèi)和C類(lèi)

總計(jì)


(3)在抽取的樣本中,從課余不參加體育鍛煉學(xué)生中隨機(jī)選取三人進(jìn)一步了解情況,求選取三人中男女都有且男生比女生多的概率. 附:K2=

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子產(chǎn)品公司前四年的年宣傳費(fèi)x(單位:千萬(wàn)元)與年銷(xiāo)售量y(單位:百萬(wàn)部)的數(shù)據(jù)如下表所示:

x(單位:千萬(wàn)元)

1

2

3

4

y(單位:百萬(wàn)部)

3

5

6

9

可以求y關(guān)于x的線(xiàn)性回歸方程為 =1.9x+1.
參考公式:回歸方程 = x+ 中斜率和截距的最小二乘法估計(jì)公式分別為:
= =
(1)該公司下一年準(zhǔn)備投入10千萬(wàn)元的宣傳費(fèi),根據(jù)所求得的回歸方程預(yù)測(cè)下一年的銷(xiāo)售量m:
(2)根據(jù)下表所示五個(gè)散點(diǎn)數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程 = x+

x(單位:千萬(wàn)元)

1

2

3

4

10

y(單位:百萬(wàn)部)

3

5

6

9

m

并利用小二乘法的原理說(shuō)明 = x+ =1.9x+1的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=e2x﹣x2﹣a.
(1)證明f(x)在(﹣∞,+∞)上為增函數(shù);
(2)當(dāng)a=1時(shí),解不等式f[f(x)]>x;
(3)若f[f(x)﹣x2﹣2x]>f(x)在(0,+∞)上恒成立,求a的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中, ,點(diǎn)P為線(xiàn)段A1C上的動(dòng)點(diǎn)(包含線(xiàn)段端點(diǎn)),則下列結(jié)論正確的 . ①當(dāng) 時(shí),D1P∥平面BDC1;
②當(dāng) 時(shí),A1C⊥平面D1AP;
③當(dāng)∠APD1的最大值為90°;
④AP+PD1的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2CD=2AD=2.在等腰直角三角形CDE中,∠C=90°,點(diǎn)M,N分別為線(xiàn)段BC,CE上的動(dòng)點(diǎn),若 , 則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開(kāi)辟為水果園,已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長(zhǎng)度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長(zhǎng)為 米,AP段圍墻高1米,AQ段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 上頂點(diǎn)為A,過(guò)A與AF2垂直的直線(xiàn)交x軸負(fù)半軸于Q點(diǎn),且F1恰好是線(xiàn)段QF2的中點(diǎn).
(1)若過(guò)A、Q、F2三點(diǎn)的圓恰好與直線(xiàn)3x﹣4y﹣7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點(diǎn),過(guò)點(diǎn)R( ,0)作與x軸不重合的直線(xiàn)l交橢圓C于E、F兩點(diǎn),直線(xiàn)BE、BF分別交直線(xiàn)x= 于M、N兩點(diǎn),若直線(xiàn)MR、NR的斜率分別為k1 , k2 , 試問(wèn):k1k2是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:,則關(guān)于x的不等式的解集為空集,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( 。

A.0B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案