【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點.求證:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
【答案】見解析
【解析】
試題分析:(1)欲證線面平行常轉(zhuǎn)化為找線與面中的一條直線平行.
本題中可結(jié)合題中的中點條件,找線BE與面中的線MO平行得證.
(2)證面面平行,需運用面與面平行的判定找線與面平行,
利用中點條件找出兩條相交直線DE和BD與面BDE平行得證.
試題解析:(1)如圖,連接AE,則AE必過DF與GN的交點O,連接MO,
則MO為△ABE的中位線,所以BE∥MO,
又BE平面DMF,MO平面DMF,所以BE∥平面DMF.
(2)因為N,G分別為平行四邊形ADEF的邊AD,EF的中點,所以DE∥GN,
又DE平面MNG,GN平面MNG,所以DE∥平面MNG.
又M為AB中點,所以MN為△ABD的中位線,所以BD∥MN,
又BD平面MNG,MN平面MNG,所以BD∥平面MNG,又DE與BD為平面BDE 內(nèi)的兩條相交直線, 所以平面BDE∥平面MNG.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi)從點P1(0,0)作x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q1點處的切線與x軸交于點P2.再從P2作x軸的垂線交曲線于點Q2,依次重復上述過程得到一系列點:P1,Q1;P2,Q2;…;Pn,Qn,記點的坐標為(,0)(k=1,2,…,n).
(1)試求與的關(guān)系(k=2,…,n);
(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建坐標系,已知曲線,已知過點的直線的參數(shù)方程為:(t為參數(shù)),直線與曲線C分別交于M,N.
(Ⅰ)寫出曲線C和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.35
B.20
C.18
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點P( , )在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)不過原點O且斜率為 的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,
證明:︳MA︳︳MB︳=︳MC︳︳MD︳
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長均相等的正四棱錐P-ABCD中,O為底面正方形的重心,M,N分別為側(cè)棱PA,PB的中點,有下列結(jié)論:
①PC∥平面OMN;
②平面PCD∥平面OMN;
③OM⊥PA;
④直線PD與直線MN所成角的大小為90°.
其中正確結(jié)論的序號是______.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com