【題目】已知,
(Ⅰ)求的值域 ;
(Ⅱ)若時,,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)先求函數導數,再導函數零點,列表分析導函數符號變化規(guī)律,確定函數單調性,結合函數圖像確定函數值域(2)利用變量分離轉化為求對應函數最值: ,利用導數及羅比特法則可得,因此,也可分類討論求最值
試題解析:解:(Ⅰ) 定義域為
,令 ,
即得,
當時, ;當時, ,
當時,取得極小值即最小值
函數的值域為.
(Ⅱ)
令,
,令,,
①若,,在上單調遞增,
,即,
在上單調遞增,,不符合題意;
②若,由得,
當時,,
在上單調遞增,
從而,即,
在上單調遞增,從而,不符合題意;
③若,則,在上單調遞減,
,即,
在上單調遞減,,從而.
綜上所述,的取值范圍是.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知曲線(為參數),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.
(1)求曲線與的交點的直角坐標;
(2)設點, 分別為曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為2.10元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(1)求y關于x的函數;
(2)如甲、乙兩戶該月共交水費40.8元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與圓 的公共點的軌跡為曲線,且曲線與軸的正半軸相交于點.若曲線上相異兩點滿足直線的斜率之積為.
(1)求的方程;
(2)證明直線恒過定點,并求定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
某公司經銷某產品,第天的銷售價格為(為常數)(元∕件),第天的銷售量為(件),且公司在第天該產品的銷售收入為元.
(1)求該公司在第天該產品的銷售收入是多少?
(2)這天中該公司在哪一天該產品的銷售收入最大?最大收入為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.直線過點.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內接矩形的周長的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com