【題目】在直角坐標(biāo)系中中,曲線(xiàn)的參數(shù)方程為為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為.

(1)設(shè)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線(xiàn)的距離的最大值;

(2)若曲線(xiàn)上所有的點(diǎn)均在直線(xiàn)的右下方,求的取值范圍.

【答案】(1);(2).

【解析】

1)將直線(xiàn)極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo),設(shè)出P點(diǎn)坐標(biāo),利用點(diǎn)到直線(xiàn)的距離公式及輔助角公式,根據(jù)余弦函數(shù)的性質(zhì),即可求得點(diǎn)P到直線(xiàn)的距離的最大值;

2)由題意可知:,恒成立,利用輔助角公式,只需,即可求得的取值范圍.

(1)由,得,

化成直角坐標(biāo)方程得,

∴直線(xiàn)的方程為,

依題意,設(shè),

到直線(xiàn)的距離

當(dāng),即,時(shí),,

故點(diǎn)到直線(xiàn)的距離的最大值為.

(2)因?yàn)榍(xiàn)上的所有點(diǎn)均在直線(xiàn)的右下方,

恒成立,即(其中)恒成立,

,又,解得.

取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,,是棱的中點(diǎn),在線(xiàn)段上,且.

(1)證明:;

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知,

(Ⅰ)求證:平面平面;

(Ⅱ)求直線(xiàn)與平面所成角的大小;

(Ⅲ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓)的左右焦點(diǎn)分別為,橢圓的上頂點(diǎn)為點(diǎn),點(diǎn)為橢圓上一點(diǎn),且.

1)求橢圓的離心率;

2)若,過(guò)點(diǎn)的直線(xiàn)交橢圓于兩點(diǎn),求線(xiàn)段的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);

(2)由直方圖可以認(rèn)為,目前該校學(xué)生每周的閱讀時(shí)間服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差

(i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布的概率進(jìn)行計(jì)算:若,令,則,且.利用直方圖得到的正態(tài)分布,求

(ii)從該高校的學(xué)生中隨機(jī)抽取20名,記表示這20名學(xué)生中每周閱讀時(shí)間超過(guò)10小時(shí)的人數(shù),求(結(jié)果精確到0.0001)以及的數(shù)學(xué)期望.

參考數(shù)據(jù):,.若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由兩個(gè)全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:;

2)如果二面角BEFD的平面角為60°,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列,.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究國(guó)民收入在國(guó)民之間的分配,避免貧富過(guò)分懸殊,美國(guó)統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線(xiàn),如圖所示:勞倫茨曲線(xiàn)為直線(xiàn)時(shí),表示收入完全平等,勞倫茨曲線(xiàn)為折線(xiàn)時(shí),表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱(chēng)為基尼系數(shù).對(duì)于下列說(shuō)法:

越小,則國(guó)民分配越公平;

②設(shè)勞倫茨曲線(xiàn)對(duì)應(yīng)的函數(shù)為,則對(duì),均有;

③若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則;

④若某國(guó)家某年的勞倫茨曲線(xiàn)近似為,則

其中不正確的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快餐連鎖店招聘外賣(mài)騎手,該快餐連鎖店提供了兩種日工資方案:方案(a)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(b)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒(méi)有提成,從第45單開(kāi)始,每完成一單提成5元,該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖.

(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;

(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案(a)的概率為,選擇方案(b)的概率為.若甲、乙、丙三名騎手分別到該快餐連鎖店應(yīng)聘,三人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案(a)的概率;

(3)若僅從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

同步練習(xí)冊(cè)答案