精英家教網 > 高中數學 > 題目詳情
已知不等式為 
1
3
≤3x<27,則x的取值范圍是
 
分析:先原不等式為
1
3
≤3x<27化為:3-
1
2
≤3x<33,再結合指數函數的性質即可得x的取值范圍.
解答:解:原不等式為 
1
3
≤3x<27,可化為:
 3-
1
2
≤3x<33,
根據指數函數的性質得:
-
1
2
≤x<3

則x的取值范圍是[-
1
2
,3)

故答案為:[-
1
2
,3)
點評:本小題主要考查函數單調性的應用、指數函數單調性的應用、不等式的解法等基礎知識,考查運算求解與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知不等式
1
2
+
1
3
+…+
1
n
1
2
[log2n]
,其中n為大于2的整數,[log2n]表示不超過log2n的最大整數.設數列{an}的各項為正,且滿足a1=b(b>0),an
nan-1
n+an-1
,n=2,3,4,….證明:an
2b
2+b[log2n]
,n=3,4,5,….

查看答案和解析>>

科目:高中數學 來源: 題型:

已知不等式為
1
3
3x<27
,則x的取值范圍( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知不等式
1
2
+
1
3
+
+
1
n
1
2
[log2n]
,其中n為大于2的整數,[log2n]表示不超過log2n的最大整數.設數列{an}的各項為正,且滿足a1=b(b>0),an
nan-1
n+an-1
,n=2,3,4,…

(Ⅰ)證明an
2b
2+b[log2n]
,n=3,4,5,…

(Ⅱ)試確定一個正整數N,使得當n>N時,對任意b>0,都有an
1
5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知不等式為 
1
3
≤3x<27,則x的取值范圍是______.

查看答案和解析>>

同步練習冊答案