【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.
【答案】3
【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,
如圖所示, 平面,
所以底面積為,
幾何體的高為,所以其體積為.
點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.
【題型】填空題
【結(jié)束】
16
【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論不正確的是________(填序號).
①各個面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;
④圓錐的頂點與底面圓周上的任意一點的連線都是母線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集是,求,的值;
(2)設(shè)關(guān)于的不等式的解集是,集合,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計了她們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在的學(xué)生中選兩位同學(xué),共同幫助成績在中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?/span>分,乙同學(xué)的成績?yōu)?/span>分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,函數(shù)的最小值為.
(1)當時,求的值;
(2)求;
(3)已知函數(shù)為定義在上的增函數(shù),且對任意的都滿足,問:是否存在這樣的實數(shù),使不等式對所有恒成立,若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.
【答案】(1);(2)當時, 恒成立, 不存在極值.當時,
有極小值無極大值.(3).
【解析】試題分析:
(1)當時,求得,得到的值,即可求解切線方程.
(2)由定義域為,求得,分和時分類討論得出函數(shù)的單調(diào)區(qū)間,即可求解函數(shù)的極值.
(3)根據(jù)題意在上遞增,得對恒成立,進而求解實數(shù)的取值范圍.
試題解析:
(1)當時, , ,
,又,∴切線方程為.
(2)定義域為, ,當時, 恒成立, 不存在極值.
當時,令,得,當時, ;當時, ,
所以當時, 有極小值無極大值.
(3)∵在上遞增,∴對恒成立,即恒成立,∴.
點睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,所以在歷屆高考中,對導(dǎo)數(shù)的應(yīng)用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進行: (1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系. (2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù). (3)考查數(shù)形結(jié)合思想的應(yīng)用.
【題型】解答題
【結(jié)束】
22
【題目】已知圓: 和點, 是圓上任意一點,線段的垂直平分線和相交于點, 的軌跡為曲線.
(1)求曲線的方程;
(2)點是曲線與軸正半軸的交點,直線交于、兩點,直線, 的斜率分別是, ,若,求:①的值;②面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線 與C1的異于原點的交點為A,與C2的交點為B,求|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com