【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點O為極點,x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
【答案】(1),;(2)
【解析】
(1)直線l的參數(shù)方程為(t為參數(shù)).將代入消去參數(shù)t可得直線l的普通方程.利用極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線C的直角坐標(biāo)方程.
(2)將代入得:,利用根與系數(shù)的關(guān)系及參數(shù)的意義可得.
(1)直線l的參數(shù)方程為(t為參數(shù)).消去參數(shù)t可得直線l的普通方程為
由,得,則有,即,
則曲線C的直角坐標(biāo)方程為
(2)將l的參數(shù)方程代入,得,設(shè)兩根為,
則,為M,N對應(yīng)的參數(shù),且
所以,線段MN的中點為Q對應(yīng)的參數(shù)為,
所以,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線與的交點的橫坐標(biāo)是否為定值?若是,則求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則函數(shù)在上的所有零點之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,則平面PQC與平面DCQ的位置關(guān)系為( )
A. 平行 B. 垂直
C. 相交但不垂直 D. 位置關(guān)系不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)滿足,記的導(dǎo)函數(shù)為,當(dāng)時恒有.若,則m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2=1與圓C2:x2+y2﹣6x+m=0.
(1)若圓C1與圓C2外切,求實數(shù)m的值;
(2)在(1)的條件下,若直線x+2y+n=0與圓C2的相交弦長為2,求實數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間內(nèi)(單位: ).若生產(chǎn)一件產(chǎn)品的直徑位于區(qū)間內(nèi)該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取200件測量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計該廠生產(chǎn)一件產(chǎn)品的平均利潤;
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測,求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間內(nèi)的槪率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當(dāng)時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當(dāng)時,設(shè),若的最小值為,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com