中,滿足:,的中點(diǎn).
(1)若,求向量與向量的夾角的余弦值;
(2)若點(diǎn)邊上一點(diǎn),,且,求的最小值.

(1);(2)

解析試題分析:(1)利用向量的數(shù)量積定義求夾角的余弦值;(2)先利用數(shù)量積定義把轉(zhuǎn)化為角CAP的三角函數(shù)的表達(dá)式,再利用不等式求的最小值,從而得所求.
試題解析:(1)設(shè)向量與向量的夾角為
         3分

               4分
(2)設(shè)
,,
,          2分

          3分

,
當(dāng)且僅當(dāng)時(shí),.             2分
考點(diǎn):1、向量的數(shù)量積定義;2、向量的運(yùn)算;3、基本不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,中線長AM=2.

(1)若=-2,求證:=0;
(2)若P為中線AM上的一個(gè)動(dòng)點(diǎn),求·()的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的對稱軸方程為:,設(shè)向量,.
(1)分別求的取值范圍;
(2)當(dāng)時(shí),求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,設(shè),,且為直角三角形,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)兩向量滿足,的夾角為,
(1)試求
(2)若向量與向量的夾角余弦值為非負(fù)值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且.
(1)將表示為的函數(shù),并求的單調(diào)增區(qū)間;
(2)已知分別為的三個(gè)內(nèi)角對應(yīng)的邊長,若,求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知: 、、是同一平面內(nèi)的三個(gè)向量,其中 =(1,2)
⑴若||,且,求的坐標(biāo);
⑵若||=垂直,求的夾角θ。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知滿足,且之間有關(guān)系式,其中.
(Ⅰ)用表示;
(Ⅱ)求的最小值,并求此時(shí)的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,A (3,0),B (0,3),C
(1)若^,求的值;
(2)能否共線?說明理由。

查看答案和解析>>

同步練習(xí)冊答案