【題目】

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

)設(shè)直線、的斜率分別為、,證明;

)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

【答案】)橢圓的標(biāo)準(zhǔn)方程為;雙曲線的標(biāo)準(zhǔn)方程為

=1.()存在常數(shù)使得恒成立,

【解析】

試題(1)設(shè)橢圓的半焦距為c,由題意知:

2a2c4(1),所以a2c2.

a2b2c2,因此b2.故橢圓的標(biāo)準(zhǔn)方程為1.

由題意設(shè)等軸雙曲線的標(biāo)準(zhǔn)方程為1(m0),因為等軸雙曲線的頂點(diǎn)是橢圓的焦點(diǎn),所以m2,因此雙曲線的標(biāo)準(zhǔn)方程為1.

(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),則k1,k2.

因為點(diǎn)P在雙曲線x2y24上,所以xy4.

因此k1·k2·1,即k1·k21.

(3)由于PF1的方程為yk1(x2),將其代入橢圓方程得(2k1)x28kx8k80,

顯然2k1≠0,顯然Δ0.由韋達(dá)定理得x1x2,x1x2.

所以|AB|

.

同理可得|CD|.

,

k1·k21,

所以.

|AB||CD||AB|·|CD|.

因此存在λ,使|AB||CD|λ|AB|·|CD|恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為正方形,平面平面ABCD,,E,F分別為AD,PB的中點(diǎn).

(1)求證:平面ABCD;

(2)求證:平面PCD;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AD⊥平面ABE,AEEBBC2,FCE上的點(diǎn),且BF⊥平面ACE.

(1)求證:AE⊥平面BCE

(2)求證:AE∥平面BFD;

(3)求三棱錐CBGF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否有關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與的濃度的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

100

102

108

114

116

的濃度(微克/立方米)

78

80

84

88

90

1)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)若周六同一時間段車流量是200萬輛,試根據(jù)(1)求出的線性回歸方程,預(yù)測此時的濃度為多少.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,,右支上的一點(diǎn),軸交于點(diǎn),的內(nèi)切圓在邊上的切點(diǎn)為.若,則的離心率是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的一條弦被點(diǎn)平分,則此弦所在的直線方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

1)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:

超過m

不超過m

總計

第一種生產(chǎn)方式

第二種生產(chǎn)方式

總計

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進(jìn)行改造出新,為保障市民安全,施工隊對廣場進(jìn)行圍擋施工如圖,圍擋經(jīng)過直徑的兩端點(diǎn)A,B及圓周上兩點(diǎn)C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點(diǎn)A,D,C,B.已知該半圓半徑OA30米,∠COD60°,設(shè)∠BOC

(1)求圍擋內(nèi)部四邊形OCQD的面積;

(2)為減少對市民出行的影響,圍擋部分面積要盡可能小求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).

(Ⅰ)求f(x)在區(qū)間[-1,2]上的最值;

(Ⅱ)若過點(diǎn)P(1,4)可作曲線y=f(x)的3條切線,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案