【題目】已知函數(shù)存在極大值與極小值,且在處取得極小值.

(1)求實數(shù)的值;

(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

(參考數(shù)據(jù):

【答案】(1)(2)

【解析】

(1),,解得,當時,只有極小值,不符合題意.當時,,符合題意,由此能求出實數(shù)的值.

(2),當時,上單調(diào)遞增,當時,令,則,利用導(dǎo)數(shù)性質(zhì)能求出實數(shù)的取值范圍.

解:(1)函數(shù)存在極大值與極小值,且在處取得極小值,

,

依題意知,解得,

時,,

時,,單調(diào)遞減;時,單調(diào)遞增,

此時,只有極小值,不符合題意.

時,,

時,,單調(diào)遞增;時,,單調(diào)遞減,

符合在處取得極小值的題意,

綜上,實數(shù)的值為

(2),

時,,故上單調(diào)遞增,

時,令

,

單調(diào)遞增,

單調(diào)遞減,

,

時,,故上單調(diào)遞減,

上有兩個零點,,

此時當時,,有一個零點,

時,,

,,

有一個零點,

綜上,實數(shù)的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點,求拋物線C的方程;

2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點PQ.

求證:線段PQ的中點坐標為;

p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】位同學分成組,參加個不同的志愿者活動,每組至少人,其中甲乙人不能分在同一組,則不同的分配方案有_____種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照的比例進行分層抽樣,統(tǒng)計結(jié)果按,,,,分組,整理如下圖:

1)求頻率分布直方圖(圖乙)中的值,并估計1200個日銷售量中,數(shù)據(jù)在區(qū)間中的個數(shù).

2)從日銷售量在的甲種酸奶的數(shù)據(jù)樣本中抽取3個,記在內(nèi)的數(shù)據(jù)個數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌電腦體驗店預(yù)計全年購入臺電腦,已知該品牌電腦的進價為/臺,為節(jié)約資金決定分批購入,若每批都購入為正整數(shù))臺,且每批需付運費元,儲存購入的電腦全年所付保管費與每批購入電腦的總價值(不含運費)成正比(比例系數(shù)為),若每批購入臺,則全年需付運費和保管費.

1)記全年所付運費和保管費之和為元,求關(guān)于的函數(shù).

2)若要使全年用于支付運費和保管費的資金最少,則每批應(yīng)購入電腦多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABCABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,均為遞增數(shù)列,的前項和為,的前項和為.且滿足,,則下列說法正確的有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四色猜想是世界三大數(shù)學猜想之一,1976年數(shù)學家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學語言表示為將平面任意地細分為不相重疊的區(qū)域,每一個區(qū)域總可以用12,3,4四個數(shù)字之一標記,而不會使相鄰的兩個區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線圍城的各區(qū)域上分別標有數(shù)字12,34的四色地圖符合四色定理,區(qū)域和區(qū)域標記的數(shù)字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為1的區(qū)域的概率所有可能值中,最大的是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為

(1)求的極坐標方程和直線的直角坐標方程;

(2)射線與圓的交點為,,與直線的交點為,求的取值范圍.

查看答案和解析>>

同步練習冊答案