【題目】已知橢圓的左、右焦點(diǎn)分別為,P為橢圓C上任意一點(diǎn),且最小值為0.

1求曲線C的方程;

2若動(dòng)直線均與橢圓C相切,且,試探究在x軸上是否存在定點(diǎn)B,使得點(diǎn)B到的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1 ;2 定點(diǎn)B為-1,01,0.

【解析】

試題分析:1設(shè),代入向量的坐標(biāo)運(yùn)算根據(jù)最小值可得的值,這樣求得橢圓方程;2當(dāng)直線斜率存在時(shí),設(shè)其方程分別為y=kx+m,y=kx+n,得到,直線與橢圓方程聯(lián)立得到,又代入點(diǎn)到直線的距離之積等于1,化簡(jiǎn)后等式恒成立,得到點(diǎn)的坐標(biāo),驗(yàn)證當(dāng)兩條直線的斜率不存在時(shí),同樣滿足.

試題解析:1設(shè)Px,y,則有

,

的最小值為0得,∴

∴橢圓C的方程為.

2①當(dāng)直線斜率存在時(shí),設(shè)其方程分別為y=kx+m,y=kx+n,

的方程代入橢圓方程得,

∵直線與橢圓C相切,,

化簡(jiǎn)得,同理,,∴,若m=n,則重合,不合題意,∴m=-n,

設(shè)在x軸上存在點(diǎn)Bt,0,點(diǎn)B到直線的距離之積為1,則

,即,

代入并去絕對(duì)值整理得:,

前式顯然不恒成立;而要使得后式對(duì)任意的恒成立,則,解得.

②當(dāng)直線斜率不存在時(shí),其方程為,定點(diǎn)-1,0到直線的距離之積為

綜上所述,滿足題意的定點(diǎn)B為-1,01,0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓ab>0)的離心率,過(guò)點(diǎn)A(0,-b)和Ba,0)的直線與原點(diǎn)的距離為

(1)求橢圓的方程.

(2)已知定點(diǎn)E(-1,0),若直線ykx+2(k0)與橢圓交于CD兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如圖所示.

1為了能選拔出最優(yōu)秀的學(xué)生,該高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

21的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求第四組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紀(jì)念2016年10月1日開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià)單位:元)與上市時(shí)間單位:天)的數(shù)據(jù)如下:

市時(shí)間

4

10

36

市場(chǎng)價(jià)

90

51

90

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)上市時(shí)間變化關(guān)系并說(shuō)明理由:①;

(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”時(shí)正確的反設(shè)為 (  )

A. a,b,c都是偶數(shù)

B. a,b,c都是奇數(shù)

C. a,b,c中至少有兩個(gè)偶數(shù)

D. a,b,c中都是奇數(shù)或至少有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若p:(x-3)(x-4)=0,q:x-3=0,則p是q的__________________條件(填“充分不必要”,“必要不充分”,“充要”“既不充分也不必要”中一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四種敘述能稱為算法的是

A. 在家里一般是媽媽做飯

B. 做飯必須要有米

C. 在野外做飯叫野炊

D. 做米飯需要刷鍋、淘米、添水、加熱這些步驟

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題 “自然數(shù)a、b 、c中恰有一個(gè)偶數(shù)”時(shí),需假設(shè)原命題不成立,下列假設(shè)正確的是(

Aabc都是奇數(shù) Ba、b c都是偶數(shù)

C.a、b、c中或都是奇數(shù)或至少有兩個(gè)偶數(shù) D.ab 、c中至少有兩個(gè)偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),存在實(shí)數(shù),,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案