中,已知,,則的形狀是(    )

A. 直角三角形    B.  等腰三角形   C.  等邊三角形   D.  等腰直角三角形

 

【答案】

B

【解析】主要考查正弦定理的應(yīng)用。

解:由可得,所以,即,又由可知,所以為等腰三角形。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的某個(gè)焦點(diǎn)為F,雙曲線G:
x2
a2
-
y2
b2
=1
(a,b>0)的某個(gè)焦點(diǎn)為F.
(1)請(qǐng)?jiān)?!--BA-->
 
上補(bǔ)充條件,使得橢圓的方程為
x2
3
+y2=1
;友情提示:不可以補(bǔ)充形如a=
3
,b=1
之類的條件.
(2)命題一:“已知拋物線y2=2px(p>0)的焦點(diǎn)為F,定點(diǎn)P(m,n)滿足n2-2pm>0,以PF為直徑的圓交y軸于A、B,則直線PA、PB與拋物線相切”.命題中涉及了這么幾個(gè)要素:對(duì)于任意拋物線P(x,y),定點(diǎn)P,以PF為直徑的圓交F(0,1)軸于A、B,PA、PB與拋物線相切.試類比上述命題分別寫出一個(gè)關(guān)于橢圓C和雙曲線G的類似正確的命題;
(3)證明命題一的正確性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高新區(qū)高三2月月考理科數(shù)學(xué)試卷(解析版 題型:填空題

已知橢圓方程為),F(-c,0)和F(c,0)分別是橢圓的左 右焦點(diǎn).

①若P是橢圓上的動(dòng)點(diǎn),延長(zhǎng)到M,使=,則M的軌跡是圓;

②若P是橢圓上的動(dòng)點(diǎn),則;

③以焦點(diǎn)半徑為直徑的圓必與以長(zhǎng)軸為直徑的圓內(nèi)切;

④若在橢圓上,則過的橢圓的切線方程是;

⑤點(diǎn)P為橢圓上任意一點(diǎn),則橢圓的焦點(diǎn)角形的面積為.

以上說法中,正確的有                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知結(jié)論:在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角

形ABC的重心,則AG:GD=2:1,若把該結(jié)論推廣到空間中,則有結(jié)論:在棱長(zhǎng)都相等的

四面體ABCD中,若三角形BCD的中心為M,四面體內(nèi)部一點(diǎn)O到各面的距離都相等,

則AO:OM=(    )

A.1               B.2          C.3          D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川綿陽南山中學(xué)高一5月月考數(shù)學(xué)試卷(解析版) 題型:填空題

在平行四邊形ABCD中,已知A-1,2,B3,4,C3,0,則該平行四形的面積為       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的某個(gè)焦點(diǎn)為F,雙曲線G:
x2
a2
-
y2
b2
=1
(a,b>0)的某個(gè)焦點(diǎn)為F.
(1)請(qǐng)?jiān)赺_____上補(bǔ)充條件,使得橢圓的方程為
x2
3
+y2=1
;友情提示:不可以補(bǔ)充形如a=
3
,b=1
之類的條件.
(2)命題一:“已知拋物線y2=2px(p>0)的焦點(diǎn)為F,定點(diǎn)P(m,n)滿足n2-2pm>0,以PF為直徑的圓交y軸于A、B,則直線PA、PB與拋物線相切”.命題中涉及了這么幾個(gè)要素:對(duì)于任意拋物線P(x,y),定點(diǎn)P,以PF為直徑的圓交F(0,1)軸于A、B,PA、PB與拋物線相切.試類比上述命題分別寫出一個(gè)關(guān)于橢圓C和雙曲線G的類似正確的命題;
(3)證明命題一的正確性.

查看答案和解析>>

同步練習(xí)冊(cè)答案