【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線在軸正半軸及軸正半軸截距相等時(shí)的直角坐標(biāo)方程;
(2)若,設(shè)直線與曲線交于不同的兩點(diǎn)、,點(diǎn),求的值.
【答案】(1),;(2).
【解析】
(1)將曲線的極坐標(biāo)方程化為,由此可得出曲線的直角坐標(biāo)方程,根據(jù)題意可求得直線的斜率,進(jìn)而可求得直線的直角坐標(biāo)方程;
(2)將代入直線的參數(shù)方程,再將直線的參數(shù)方程與曲線的直角坐標(biāo)方程聯(lián)立,設(shè)點(diǎn)、對(duì)應(yīng)的參數(shù)分別為、,列出韋達(dá)定理,結(jié)合的幾何意義可求得的值.
(1)由得,所以,
由,,得曲線的直角坐標(biāo)方程為.
當(dāng)直線在軸正半軸及軸正半軸截距相等時(shí),,
由得,所以,
即此時(shí)直線的直角坐標(biāo)方程為;
(2)當(dāng)時(shí),直線的參數(shù)方程為(為參數(shù)),
設(shè)點(diǎn)、對(duì)應(yīng)的參數(shù)分別為、,
將直線的參數(shù)方程代入,得,整理得,
由韋達(dá)定理得,,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),其中.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的兩個(gè)極值點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】干支紀(jì)年法是中國歷法上自古以來就一直使用的紀(jì)年方法、干支是天干和地支的總稱,甲、乙、丙、丁、戊、己、庚、辛、壬、癸為天干:子、丑、寅、卯、辰、已、午、未,申、西、戌、亥為地支.把十天干和十二地支依次相配,如甲對(duì)子、乙對(duì)丑、丙對(duì)寅、…癸對(duì)寅,其中天干比地支少兩位,所以天干先循環(huán),甲對(duì)戊、乙對(duì)亥、…接下來地支循環(huán),丙對(duì)子、丁對(duì)丑、.,以此用來紀(jì)年,今年2020年是庚子年,那么中華人民共和國建國100周年即2049年是( )
A.戊辰年B.己巳年C.庚午年D.庚子年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)同時(shí)滿足下列兩個(gè)條件:①對(duì)任意的恒有成立;②當(dāng)時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快餐連鎖店,每天以200元的價(jià)格從總店購進(jìn)早餐,然后以每份10元的價(jià)格出售.40份以內(nèi),總店收成本價(jià)每份5元,當(dāng)天不能出售的早餐立即以1元的價(jià)格被總店回收,超過40份的未銷售的部分總店成本價(jià)回收,然后進(jìn)行環(huán)保處理.如果銷售超過40份,則超過40份的利潤需上繳總店.該快餐連鎖店記錄了100天早餐的銷售量(單位:份),整理得下表:
日銷售量 | 25 | 30 | 35 | 40 | 45 | 50 |
頻數(shù) | 10 | 16 | 28 | 24 | 14 | 8 |
完成下列問題:
(1)寫出每天獲得利潤與銷售早餐份數(shù)()的函數(shù)關(guān)系式;
(2)估計(jì)每天利潤不低于150元的概率;
(3)估計(jì)該快餐店每天的平均利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(﹣1,1]內(nèi),有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,,又,,,.
(1)求證:平面;
(2)求與平面所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是目前已知RNA病毒中基因組最大的一個(gè)病毒家族,可引起人和動(dòng)物的呼吸系統(tǒng)、消化系統(tǒng)、神經(jīng)系統(tǒng)等方面的嚴(yán)重疾病.自2019年底開始,一種新型冠狀病毒COVID-19開始肆虐全球.人感染了新型冠狀病毒后初期常見發(fā)熱乏力、咽痛干咳、鼻塞流涕、腹痛腹瀉等癥狀,嚴(yán)重者可致呼吸困難、臟器衰竭甚至死亡.篩查時(shí)可先通過血常規(guī)和肺部CT進(jìn)行初步判斷,若血液中白細(xì)胞、淋巴細(xì)胞有明顯減少或肺部CT有可見明顯磨玻璃影等病毒性肺炎感染癥狀則為疑似病例,可再通過核酸檢測(cè)做最終判斷,現(xiàn)A、B、C、D、E五人均出現(xiàn)了發(fā)熱咳嗽等癥狀,且五人發(fā)病前14天因求學(xué)、出差、旅行、探親等原因均有疫區(qū)旅居史.經(jīng)過初次血液化驗(yàn)已確定其中有且僅有一人罹患新冠肺炎,其余四人只是普通流感,但因化驗(yàn)報(bào)告不慎遺失,現(xiàn)需要再次化驗(yàn)以確定五人中唯一患者的姓名,下面是兩種化驗(yàn)方案:
方案甲:逐個(gè)化驗(yàn),直到能確定患者為止;
方案乙:混合檢驗(yàn),先任取三人血樣混合在一起化驗(yàn),若混合血液化驗(yàn)結(jié)果呈陽性則表明患者在這3人中,然后再逐個(gè)化驗(yàn),直到能確定患者為止;若混合血液化驗(yàn)結(jié)果呈陰性,則在另外2人中任選一人進(jìn)行化驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中每份樣本是陽性結(jié)果是等可能的,且每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是相互獨(dú)立的.
(1)求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率;
(2)求的期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com