【題目】冠狀病毒是目前已知RNA病毒中基因組最大的一個病毒家族,可引起人和動物的呼吸系統(tǒng)、消化系統(tǒng)、神經(jīng)系統(tǒng)等方面的嚴(yán)重疾病.2019年底開始,一種新型冠狀病毒COVID-19開始肆虐全球.人感染了新型冠狀病毒后初期常見發(fā)熱乏力、咽痛干咳、鼻塞流涕、腹痛腹瀉等癥狀,嚴(yán)重者可致呼吸困難、臟器衰竭甚至死亡.篩查時可先通過血常規(guī)和肺部CT進行初步判斷,若血液中白細胞、淋巴細胞有明顯減少或肺部CT有可見明顯磨玻璃影等病毒性肺炎感染癥狀則為疑似病例,可再通過核酸檢測做最終判斷,現(xiàn)A、B、C、D、E五人均出現(xiàn)了發(fā)熱咳嗽等癥狀,且五人發(fā)病前14天因求學(xué)、出差、旅行、探親等原因均有疫區(qū)旅居史.經(jīng)過初次血液化驗已確定其中有且僅有一人罹患新冠肺炎,其余四人只是普通流感,但因化驗報告不慎遺失,現(xiàn)需要再次化驗以確定五人中唯一患者的姓名,下面是兩種化驗方案:

方案甲:逐個化驗,直到能確定患者為止;

方案乙:混合檢驗,先任取三人血樣混合在一起化驗,若混合血液化驗結(jié)果呈陽性則表明患者在這3人中,然后再逐個化驗,直到能確定患者為止;若混合血液化驗結(jié)果呈陰性,則在另外2人中任選一人進行化驗.假設(shè)在接受檢驗的血液樣本中每份樣本是陽性結(jié)果是等可能的,且每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨立的.

1)求依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)的概率;

2)求的期望.

【答案】1;(2.

【解析】

1)先分析得到所有可能的值為,所有可能的值為,并求,分別取每個值時概率,再求;

2)列出隨機變量的分布列,求出的期望.

1所有可能的值為,所有可能的值為,

若乙驗兩次時,有兩種可能:

①先驗三只結(jié)果為陽性,再從中逐個驗時,恰好一次驗中概率為:

②先驗三只結(jié)果為陰性,再從其它兩只中驗出陽性(無論第二次試驗中有沒有,均可以在第二次結(jié)束)

∴乙只用兩次的概率為.

若乙驗三次時,只有一種可能:

先驗三只結(jié)果為陽性,再從中逐個驗時,恰好二次驗中概率為在三次驗出時概率為

,

2,所以的分布列為

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,

(1)求證:平面平面;

(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的直角坐標(biāo)方程及直線軸正半軸及軸正半軸截距相等時的直角坐標(biāo)方程;

2)若,設(shè)直線與曲線交于不同的兩點、,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.函數(shù)的最小正周期為,在上單調(diào)遞增

B.函數(shù)的最小正周期為,在上單調(diào)遞增

C.函數(shù)的最小正周期為,在上單調(diào)遞增

D.函數(shù)的最小正周期為,在上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是梯形,//,四邊形是矩形,,上的動點.

1)試確定點的位置,使//平面;

2)在(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱中,平面ABCD,四邊形ABCD為平行四邊形,.

1)若,求證://平面;

2)若,且三棱錐的體積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù)).

1)求曲線的直角坐標(biāo)方程;

2)若曲線有且僅有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點為P,當(dāng)k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內(nèi)),連結(jié)PA,QF,的面積是面積的3倍.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)已知M為線段PA的中點,連結(jié)QA,QM

①求證:Q,F,M三點共線;

②記直線QP,QM,QA的斜率分別為,,若,求的面積.

查看答案和解析>>

同步練習(xí)冊答案