【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)yx2+(2a-3)x+1的圖像與x軸交于不同的兩點.如果pq真,pq假,求實數(shù)a的取值范圍.

【答案】[,1)∪(,+∞).

【解析】

先求出當(dāng)命題p,q為真命題時的取值范圍,由pq真,pq假可得pq一真一假,由此可得關(guān)于的不等式組,解不等式組可得結(jié)論.

當(dāng)命題p為真,即函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減時,

可得

當(dāng)命題q為真,即函數(shù)yx2+(2a-3)x+1的圖像與x軸交于不同的兩點,

可得,

解得,

,

所以當(dāng)q為真命題時,有

pq為真,pq為假,

pq一真一假.

①若pq假,則 ,解得;

②若pq真,則解得

綜上可得

∴實數(shù)a的取值范圍是[,1)∪(,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)= (其中a∈R)
(1)求函數(shù)f(x)的極值;
(2)設(shè)函數(shù)h(x)=f′(x)+g(x)﹣1,試確定h(x)的單調(diào)區(qū)間及最值;
(3)求證:對于任意的正整數(shù)n,均有 成立.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(x+a)+x2
(1)若當(dāng)x=﹣1時,f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(2)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為的中點,為線段上的動點,過點,,的平面截該正方體所得的截面記為,則下列命題正確的是__________(寫出所有正確命題的編號).

①當(dāng)時,為四邊形;

②當(dāng)時,為等腰梯形;

③當(dāng)時,的交點滿足

④存在點,為六邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn},滿足a1=b1=3,an+1﹣an= =3,n∈N* , 若數(shù)列{cn}滿足cn= ,則c2017=(
A.92016
B.272016
C.92017
D.272017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時,ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域是{x|x≠0},對定義域內(nèi)的任意,都有f(·)=f()+f(),且當(dāng)x>1時,f(x)>0,f(2)=1.

(1)證明:(x)是偶函數(shù);

(2)證明:(x)在(0,+∞)上是增函數(shù);

(3)解不等式(2-1)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標(biāo)為x0 , 證明f′(x0)<0.

查看答案和解析>>

同步練習(xí)冊答案