【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實(shí)數(shù)a的取值范圍

【答案】(1)AB={x|2<x<10},={x|2<x<37≤x<10}(2)(3,+∞).

【解析】

(1)由題意結(jié)合集合的交并補(bǔ)運(yùn)算進(jìn)行計(jì)算即可;

(2)由題意結(jié)合數(shù)軸和題意即可確定實(shí)數(shù)a的取值范圍.

(1)因?yàn)?/span>A={|3≤x<7},B={x|2<x<10},所以AB={x|2<x<10},

={x|x<3x≥7}

所以,={x|x<3x≥7}∩{x|2<x<10}={x|2<x<37≤x<10}

(2)如圖,當(dāng)a>3時(shí),AC,

所以,所求實(shí)數(shù)a的取值范圍是(3,+∞)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)滿足:對(duì)任意都有.

1)求證:函數(shù)是奇函數(shù);

2)如果當(dāng)時(shí),有,試判斷上的單調(diào)性,并用定義證明你的判斷;

(3)在(2)的條件下,若對(duì)滿足不等式的任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司訂購(gòu)了一批樹(shù)苗,為了檢測(cè)這批樹(shù)苗是否合格,從中隨機(jī)抽測(cè) 株樹(shù)苗的高度,經(jīng)數(shù)據(jù)處理得到如圖的頻率分布直方圖,起中最高的 株樹(shù)苗高度的莖葉圖如圖所示,以這 株樹(shù)苗的高度的頻率估計(jì)整批樹(shù)苗高度的概率.

(1)求這批樹(shù)苗的高度高于 米的概率,并求圖19-1中, , 的值;

(2)若從這批樹(shù)苗中隨機(jī)選取 株,記 為高度在 的樹(shù)苗數(shù)列,求 的分布列和數(shù)學(xué)期望.

(3)若變量 滿足,則稱變量 滿足近似于正態(tài)分布 的概率分布.如果這批樹(shù)苗的高度滿足近似于正態(tài)分布 的概率分布,則認(rèn)為這批樹(shù)苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問(wèn),該批樹(shù)苗能否被簽收?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若 在區(qū)間 上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

(2)求函數(shù)在上的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù));以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若把曲線各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的,得到曲線,求曲線的方程;

(Ⅲ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)A∪BA,求實(shí)數(shù)m的取值范圍;

(2)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù);

(3)當(dāng)x∈R時(shí),若A∩B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,a≠1,設(shè)p:函數(shù)y=loga(x+3)在(0,+∞)上單調(diào)遞減,q:函數(shù)yx2+(2a-3)x+1的圖像與x軸交于不同的兩點(diǎn).如果pq真,pq假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

判斷的奇偶性.

寫出的單調(diào)區(qū)間(只需寫出結(jié)果).

若方程有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案