【題目】已知函數(shù).

判斷的奇偶性.

寫出的單調區(qū)間(只需寫出結果).

若方程有解,求實數(shù)的取值范圍.

【答案】(1)奇函數(shù);(2) 函數(shù)的單調遞減區(qū)間為:,;單調遞增區(qū)間為:,;(3)

【解析】

(1)利用奇偶函數(shù)的定義 判斷可得;

(2)先寫出時函數(shù)的單調區(qū)間,再根據函數(shù)的奇偶性得到時的單調區(qū)間;

(3)將方程有解轉化為函數(shù) 與函數(shù) 的圖象有交點,作出圖象后,觀察圖象可得.

(1)因為的定義域為R,

,所以,

所以函數(shù)為偶函數(shù).

(2),上遞減,上遞增,

又因為函數(shù)為偶函數(shù),所以上遞減,上遞增,

故函數(shù)的單調遞減區(qū)間為:,;單調遞增區(qū)間為:,.

(3)因為方程有解,所以函數(shù)與函數(shù)的圖象有交點,

作出函數(shù)的圖象如下:

由圖可知:.

所以實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時,ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域是{x|x≠0},對定義域內的任意,都有f(·)=f()+f(),且當x>1時,f(x)>0,f(2)=1.

(1)證明:(x)是偶函數(shù);

(2)證明:(x)在(0,+∞)上是增函數(shù);

(3)解不等式(2-1)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.

(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby+4=0,l2:(a-1)xyb=0.求分別滿足下列條件的a,b的值:

(1)直線l1過點(-3,-1),并且直線l1l2垂直;則a____,b_______

(2)直線l1與直線l2平行,并且直線l2y軸上的截距為3.a____,b_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種子培育基地新研發(fā)了兩種型號的種子,從中選出90粒進行發(fā)芽試驗,并根據結果對種子進行改良.將試驗結果匯總整理繪制成如下列聯(lián)表:

(1)列聯(lián)表補充完整,并判斷是否有99%的把握認為發(fā)芽和種子型號有關;

(2)若按照分層抽樣的方式,從不發(fā)芽的種子中任意抽取20粒作為研究小樣本,并從這20粒研究小樣本中任意取出3粒種子,設取出的型號的種子數(shù)為,求的分布列與期望.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x= 處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調區(qū)間;
(3)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為x0 , 證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn , yn , 如果點數(shù)滿足xn ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案