(本小題12分)設(shè),,函數(shù)
(Ⅰ)設(shè)不等式的解集為C,當(dāng)時(shí),求實(shí)數(shù)取值范圍;
(Ⅱ)若對(duì)任意,都有成立,試求時(shí),的值域;
(Ⅲ)設(shè) ,求的最小值.

解:(1),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d5/8/mdzih.gif" style="vertical-align:middle;" />,二次函數(shù)圖像
開口向上,且恒成立,故圖像始終與軸有兩個(gè)交點(diǎn),由題意,要使這兩個(gè)
交點(diǎn)橫坐標(biāo),當(dāng)且僅當(dāng):
,            解得:                              
(2)對(duì)任意都有,所以圖像關(guān)于直線對(duì)稱,
所以,得.所以上減函數(shù). 
;.故時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/d/zpxfr.gif" style="vertical-align:middle;" />.                                
(3)令,則
(i)當(dāng)時(shí),,
當(dāng),則函數(shù)上單調(diào)遞減,
從而函數(shù)上的最小值為
,則函數(shù)的最小值為,且
(ii)當(dāng)時(shí),函數(shù)
,則函數(shù)上的最小值為,且
,則函數(shù)上單調(diào)遞增,
從而函數(shù)上的最小值為
綜上,當(dāng)時(shí),函數(shù)的最小值為
當(dāng)時(shí),函數(shù)的最小值為 
當(dāng)時(shí),函數(shù)的最小值為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)已知函數(shù),(),若同時(shí)滿足以下條件:
在D上單調(diào)遞減或單調(diào)遞增
② 存在區(qū)間[]D,使在[]上的值域是[],那么稱()為閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是不是閉函數(shù)?若是請(qǐng)找出區(qū)間[];若不是請(qǐng)說(shuō)明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題10分)
求值:(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt∆FHE,H是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F分別落在線段BC,AD上.已知AB=20米,AD=10米,記∠BHE=θ.
(1)試將污水凈化管道的長(zhǎng)度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=,求此時(shí)管道的長(zhǎng)度L;
(3)問(wèn):當(dāng)θ取何值時(shí),污水凈化效果最好?
并求出此時(shí)管道的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù),其中,設(shè)
(1)判斷的奇偶性,并說(shuō)明理由
(2)若,求使成立的x的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù)
(1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))fx)=x·vx)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0
有兩個(gè)實(shí)根為x1="3," x2=4.(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
設(shè),,函數(shù)
(1)設(shè)不等式的解集為C,當(dāng)時(shí),求實(shí)數(shù)取值范圍
(2)若對(duì)任意,都有成立,試求時(shí),的值
(3)設(shè) ,求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案