精英家教網 > 高中數學 > 題目詳情

已知數列滿足:,其中.
(1)求證:數列是等比數列;
(2)令,求數列的最大項.

(1)詳見解析;(2)最大項為.

解析試題分析:(1)首先根據已知等式,令,可得,再根據已知等式可得,將兩式相減,即可得到數列的一個遞推公式,只需驗證將此遞推公式變形得到形如的形式,從可證明數列是等比數列;(2)由(1)可得,從而,因此要求數列的最大項,可以通過利用作差法判斷數列的單調性來求得: ,
時,,即;當時,; 當時,,即,因此數列的最大項為.
試題解析:(1)當時,,∴,            1分
又∵,     2分
,即,∴.       4分
又∵,∴數列是首項為,公比為的等比數列;  6分
(2)由(1)知,,
,  ∴ ,      8分
時,,即,                     9分
時,,                                         10分   
時,,即,                   11分
∴數列的最大項為,                              13分
考點:1.數列的通項公式;2.數列的單調性判斷.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

挪威數學家阿貝爾,曾經根據階梯形圖形的兩種不同分割(如下圖),利用它們的面積關系發(fā)現了一個重要的恒等式——阿貝爾公式:


則其中:(I)L3=       ;(Ⅱ)Ln=       

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

在如圖所示的數表中,第i行第j列的數記為,且滿足, ();又記第3行的數3,5,8,13,22,39……為數列{bn},則
(1)此數表中的第2行第8列的數為_________.
(2)數列{bn}的通項公式為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設數列{an}滿足,(n∈N﹡),且,則數列{an}的通項公式為       .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

數列的通項公式為,則該數列的前100項和為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,),,)是函數的圖象上的任意兩點.
(1)當時,求+的值;
(2)設,其中,求
(3)對應(2)中,已知,其中,設為數列的前項和,求證.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前n項和為,,且(),數列滿足,,對任意,都有
(1)求數列、的通項公式;
(2)令.
①求證:
②若對任意的,不等式恒成立,試求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分18分)本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數列滿足.
(1)若,求的取值范圍;
(2)若是等比數列,且,正整數的最小值,以及取最小值時相應的僅比;
(3)若成等差數列,求數列的公差的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設各項均為正數的數列的前n項和為Sn,已知,且對一切都成立.
(1)若λ=1,求數列的通項公式;
(2)求λ的值,使數列是等差數列.

查看答案和解析>>

同步練習冊答案