設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,已知,且對(duì)一切都成立.
(1)若λ=1,求數(shù)列的通項(xiàng)公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.
(1);(2).
解析試題分析:(1)本題已知條件是,我們要從這個(gè)式子想辦法得出與的簡(jiǎn)單關(guān)系式,變形為,這時(shí)我們聯(lián)想到累乘法求數(shù)列通項(xiàng)公式的題型,因此首先由得
,又,這個(gè)式子可化簡(jiǎn)為,這樣就變成我們熟悉的已知條件,已知解法了;(2)這種類(lèi)型問(wèn)題,一種方法是從特殊到一般的方法,可由成等差數(shù)列,求出,然后把代入已知等式,得,,這個(gè)等式比第(1)題難度大點(diǎn),把化為,有當(dāng)n≥2時(shí),,整理,得,特別是可變形為,這樣與第(1)處理方法相同,可得,即,從而說(shuō)不得是等差數(shù)列.
試題解析:(1)若λ=1,則,.
又∵,∴, 2分
∴,
化簡(jiǎn),得.① 4分
∴當(dāng)時(shí),.②
②-①,得,∴(). 6分
∵當(dāng)n=1時(shí),,∴n=1時(shí)上式也成立,
∴數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列,an=2n-1(). 8分
(2)令n=1,得.令n=2,得. 10分
要使數(shù)列是等差數(shù)列,必須有,解得λ=0. 11分
當(dāng)λ=0時(shí),,且.
當(dāng)n≥2時(shí),,
整理,得,, 13分
從而,
化簡(jiǎn),得,所以. 15分
綜上所述,(),
所以λ=0時(shí),數(shù)列是等差數(shù)列. 16分
考點(diǎn):遞推公式,累乘法,與的關(guān)系,等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足:,其中.
(1)求證:數(shù)列是等比數(shù)列;
(2)令,求數(shù)列的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列滿足:,公比,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列和數(shù)列的通項(xiàng)和;
(2)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列和的通項(xiàng)公式分別為,.將與中的公共項(xiàng)按照從小到大的順序排列構(gòu)成一個(gè)新數(shù)列記為.
(1)試寫(xiě)出,,,的值,并由此歸納數(shù)列的通項(xiàng)公式;
(2)證明你在(1)所猜想的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,若(,,為常數(shù)),則稱(chēng)為數(shù)列.
(1)若數(shù)列是數(shù)列,,,寫(xiě)出所有滿足條件的數(shù)列的前項(xiàng);
(2)證明:一個(gè)等比數(shù)列為數(shù)列的充要條件是公比為或;
(3)若數(shù)列滿足,,,設(shè)數(shù)列的前項(xiàng)和為.是否存在
正整數(shù),使不等式對(duì)一切都成立?若存在,求出的值;
若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),用表示當(dāng)時(shí)的函數(shù)值中整數(shù)值的個(gè)數(shù).
(1)求的表達(dá)式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱(chēng)數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出前6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項(xiàng)和S2011.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是首項(xiàng)為,公差為的等差數(shù)列,是其前項(xiàng)和.
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)記,,且、、成等比數(shù)列,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com