已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.

(1)a2=3   a3=6  (2) an=

解析解:(1)由S2=a2得3(a1+a2)=4a2,解得a2=3a1=3,
由S3=a3得3(a1+a2+a3)=5a3,
解得a3=(a1+a2)=6.
(2)由題設(shè)知a1=1.
當(dāng)n>1時(shí)有an=Sn-Sn-1=an-an-1,
整理得an=an-1,
于是a1=1,
a2=a1,
a3=a2,

an-1=an-2,
an=an-1.
將以上n個(gè)等式兩端分別相乘,整理得an=.
綜上,{an}的通項(xiàng)公式an=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分18分)本題共3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分9分.
已知數(shù)列滿(mǎn)足.
(1)若,求的取值范圍;
(2)若是等比數(shù)列,且,正整數(shù)的最小值,以及取最小值時(shí)相應(yīng)的僅比;
(3)若成等差數(shù)列,求數(shù)列的公差的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,已知,且對(duì)一切都成立.
(1)若λ=1,求數(shù)列的通項(xiàng)公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于數(shù)列,把作為新數(shù)列的第一項(xiàng),把)作為新數(shù)列的第項(xiàng),數(shù)列稱(chēng)為數(shù)列的一個(gè)生成數(shù)列.例如,數(shù)列的一個(gè)生成數(shù)列是.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項(xiàng)和.
(1)寫(xiě)出的所有可能值;
(2)若生成數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;
(3)證明:對(duì)于給定的的所有可能值組成的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知集合,,設(shè)是等差數(shù)列的前項(xiàng)和,若的任一項(xiàng),且首項(xiàng)中的最大數(shù), .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,,且滿(mǎn)足
(1)求證數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)上兩點(diǎn),若,且P點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求P點(diǎn)的縱坐標(biāo);
(Ⅱ)若;
(Ⅲ)記為數(shù)列的前n項(xiàng)和,若對(duì)一切都成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)公比大于零的等比數(shù)列的前項(xiàng)和為,且,數(shù)列的前項(xiàng)和為,滿(mǎn)足,
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)滿(mǎn)足對(duì)所有的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案