已知集合,,設(shè)是等差數(shù)列的前項(xiàng)和,若的任一項(xiàng),且首項(xiàng)中的最大數(shù), .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求的值.

(1));(2).

解析試題分析:(1)首先由題設(shè)知: 集合中所有元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列;集合中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列.
得到中的最大數(shù)為,得到等差數(shù)列的首項(xiàng).
通過(guò)設(shè)等差數(shù)列的公差為,建立的方程組,
根據(jù),求得
由于中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列,
所以,由,得到.
(2)由(1)得到,
于是可化為等比數(shù)列的求和.
試題解析:(1)由題設(shè)知: 集合中所有元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列;集合中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列.
由此可得,對(duì)任意的,有
中的最大數(shù)為,即             3分
設(shè)等差數(shù)列的公差為,則,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d9/9/12ase2.png" style="vertical-align:middle;" />, ,即
由于中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列,
所以,由,所以 
所以數(shù)列的通項(xiàng)公式為)        8分
(2)           9分
于是有   

     12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式,一元一次不等式的解法,等比數(shù)列的求和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}中,a5=12,a20=-18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,若,,為常數(shù)),則稱數(shù)列.
(1)若數(shù)列數(shù)列,,,寫(xiě)出所有滿足條件的數(shù)列的前項(xiàng);
(2)證明:一個(gè)等比數(shù)列為數(shù)列的充要條件是公比為;
(3)若數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為.是否存在
正整數(shù),使不等式對(duì)一切都成立?若存在,求出的值;
若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出前6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項(xiàng)和S2011.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,.
(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;
(2)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公差不為0的等差數(shù)列的前3項(xiàng)和=9,且成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式和前n項(xiàng)和;
(2)設(shè)為數(shù)列的前n項(xiàng)和,若對(duì)一切恒成立,求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是正數(shù)組成的數(shù)列,,且點(diǎn)在函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三個(gè)不同的數(shù)成等差數(shù)列,其和為6,如果將此三個(gè)數(shù)重新排列,他們又可以成等比數(shù)列,求這個(gè)等差數(shù)列。

查看答案和解析>>

同步練習(xí)冊(cè)答案