設(shè)函數(shù)上兩點,若,且P點的橫坐標(biāo)為.
(Ⅰ)求P點的縱坐標(biāo);
(Ⅱ)若求;
(Ⅲ)記為數(shù)列的前n項和,若對一切都成立,試求a的取值范圍.
(Ⅰ);(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ)求點的縱坐標(biāo),由于點滿足,由向量加法的幾何意義可知,是的中點,則,而兩點在函數(shù)上,故,而,從而可得點的縱坐標(biāo);(Ⅱ)根據(jù),,,可利用倒序相加法求和的方法,從而可求的的值;(Ⅲ)記為數(shù)列的前n項和,若對一切都成立,試求的取值范圍,由(Ⅱ)可知,從而,可用拆項相消法求和,若對一切都成立,即,只需求出的最大值,從而得的取值范圍.
試題解析:(Ⅰ)∵,∴是的中點,則------(2分)
∴.∴,所以點的縱坐標(biāo)為. (4分)
(Ⅱ)由(Ⅰ)知,,,,,
兩式相加得
∴; (8分)
(Ⅲ)
10分
12分
14分
考點:數(shù)列與函數(shù)的綜合;數(shù)列的求和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足:,公比,數(shù)列的前項和為,且.
(1)求數(shù)列和數(shù)列的通項和;
(2)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為0的等差數(shù)列的前3項和=9,且成等比數(shù)列
(1)求數(shù)列的通項公式和前n項和;
(2)設(shè)為數(shù)列的前n項和,若對一切恒成立,求實數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若無窮數(shù)列滿足:①對任意,;②存在常數(shù),對任意,,則稱數(shù)列為“數(shù)列”.
(Ⅰ)若數(shù)列的通項為,證明:數(shù)列為“數(shù)列”;
(Ⅱ)若數(shù)列的各項均為正整數(shù),且數(shù)列為“數(shù)列”,證明:對任意,;
(Ⅲ)若數(shù)列的各項均為正整數(shù),且數(shù)列為“數(shù)列”,證明:存在,數(shù)列為等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是正數(shù)組成的數(shù)列,,且點在函數(shù)的圖象上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是首項為,公差為的等差數(shù)列,是其前項和.
(1)若,,求數(shù)列的通項公式;
(2)記,,且、、成等比數(shù)列,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列的前項和為,對任意正整數(shù)都有,記.
(1)求,的值;
(2)求數(shù)列的通項公式;
(3)若求證:對任意.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com