已知M為橢圓上一點(diǎn),為橢圓的一個(gè)焦點(diǎn),且為線(xiàn)段的中點(diǎn),則ON的長(zhǎng)為
A.4B. 8C.2D.
A
本題考查橢圓的定義和幾何性質(zhì)及平面幾何知識(shí).
 
設(shè)橢圓另一個(gè)焦點(diǎn)為,根據(jù)橢圓定義得:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823163726970461.png" style="vertical-align:middle;" />分別是的中點(diǎn),所以的中位線(xiàn),則
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)已知橢圓(a>b>0)
(1)當(dāng)橢圓的離心率,一條準(zhǔn)線(xiàn)方程為x=4 時(shí),求橢圓方程;
(2)設(shè)是橢圓上一點(diǎn),在(1)的條件下,求的最大值及相應(yīng)的P點(diǎn)坐標(biāo)。
(3)過(guò)B(0,-b)作橢圓(a>b>0)的弦,若弦長(zhǎng)的最大值不是2b,求橢圓離心率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.
(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;
(2)若點(diǎn)E滿(mǎn)足,問(wèn)是否存在不平行AB的直線(xiàn)l與橢圓C交于M、N兩點(diǎn)且,若存在,求出直線(xiàn)l與AB夾角的范圍,若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)與橢圓有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn).
(1)求雙曲線(xiàn)的方程;
(2) 過(guò)點(diǎn)作斜率為1的直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上的點(diǎn)到一條準(zhǔn)線(xiàn)距離的最小值恰好等于該橢圓半焦距,則此橢圓的離心率是  ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的兩個(gè)焦點(diǎn)為F1,F2,P為橢圓上一點(diǎn),且∠F1PF2=60°,則|PF1|·|PF2|的值為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的一個(gè)焦點(diǎn)為,若橢圓上存在點(diǎn),滿(mǎn)足以橢圓短軸為直徑的圓與線(xiàn)段相切于線(xiàn)段的中點(diǎn),則該橢圓的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)與橢圓恒有公共點(diǎn)。則實(shí)數(shù)m的取值范圍是(   )
A.(0,1) B.(0,5)  C.D.(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的離心率為,過(guò)右焦點(diǎn)且斜率為的直線(xiàn)與相交于兩點(diǎn).若,則  ▲   

查看答案和解析>>

同步練習(xí)冊(cè)答案