【題目】已知正三角形ABC邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時(shí)四面體ABCD的外接球的表面積為

【答案】7π
【解析】解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,
三棱柱ABC﹣A1B1C1的中,底面邊長(zhǎng)為1,1, ,
由題意可得:三棱柱上下底面中點(diǎn)連線的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說(shuō)明中心就是外接球的球心,
∴三棱柱ABC﹣A1B1C1的外接球的球心為O,外接球的半徑為r,
棱柱的高為 ,球心到底面的距離為 ,
三棱柱中,底面△BDC,BD=CD=1,BC= ,∴∠BDC=120°,∴△BDC的外接圓的半徑為: =1
∴球的半徑為r= =
外接球的表面積為:4πr2=7π.
故答案為:7π.
三棱錐B﹣ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,然后求球的表面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點(diǎn)是橢圓上的點(diǎn)

(1)若過(guò)點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),求被橢圓的伴隨圓所截得的弦長(zhǎng):

(2)是橢圓上的兩點(diǎn),設(shè)是直線的斜率,且滿足,試問(wèn):直線是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過(guò)定點(diǎn),試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若f(-1)=f(1),求a,并直接寫(xiě)出函數(shù)的單調(diào)增區(qū)間;

(2)當(dāng)a時(shí),是否存在實(shí)數(shù)x,使得=一?若存在,試確定這樣的實(shí)數(shù)x的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班準(zhǔn)備從甲、乙、丙等6人中選出4人參加某項(xiàng)活動(dòng),要求甲、乙、丙三人中至少有兩人參加,那么不同的方法有 ( )

A. 18種 B. 12種 C. 432種 D. 288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動(dòng)支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計(jì)

15

12

13

7

8

45

(1)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,按分層抽樣的方法,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取6名用戶

求抽取的6名用戶中,男女用戶各多少人;

從這6名用戶中抽取2人,求既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率.

(2)把每周使用移動(dòng)支付超過(guò)3次的用戶稱為“移動(dòng)支付活躍用戶”,填寫(xiě)下表,問(wèn)能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移動(dòng)支付活躍用戶

移動(dòng)支付活躍用戶

合計(jì)

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程為為參數(shù)).

1)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;

2)判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)O為極點(diǎn),O軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ+ ).
(1)寫(xiě)出曲線C的參數(shù)方程;
(2)在曲線C上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定理:“實(shí)數(shù)m,n為常數(shù),若函數(shù)滿足,則函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱”.

(1)已知函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,求實(shí)數(shù)b的值;

(2)已知函數(shù)滿足,當(dāng)時(shí),都有成立,且當(dāng)時(shí), ,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案