19.如圖,有一個正三棱錐的零件,P是側(cè)面ACD上的一點.過點P作一個與棱AB垂直的截面,怎樣畫法?并說明理由.

分析 過點P作一個與棱AB垂直的截面,實質(zhì)就是證明AB垂直這個截面,由正三棱錐的性質(zhì)可證CD⊥AB,構(gòu)造截面的另一邊與AB垂直即可.
法一,在平面ACD中,過P點作EF∥CD,交AC于E點,交AD于F點,再過E點作EG⊥AB,連接FG,平面EFG為所求.
法二,過C在平面ABC內(nèi)M作CE⊥AB,垂足為E.連接DE.過點P作MN∥CD,交AC于M,AD于N.過M作MH∥CE,交AE于H,連接HN,平面HMN為所求

解答 解:(方法一)
畫法:過點P在面ACD內(nèi)作EF∥CD,交AC于E點,交AD于F點.
過E作EG⊥AB,連接FG,平面EFG為所求.----(4分)
理由:取CD中點M,連接AM,BM.
∵A-BCD為正三棱錐,
∴AC=AD,BC=BD,
∴BM⊥CD,AM⊥CD,----(6分)
AM∩BM=M,
AM?平面ABM,BM?平面ABM,
∴CD⊥平面ABM.----(8分)
∵AB?平面ABM,
∴CD⊥AB.
∵EF∥CD,
∴EF⊥AB.----(10分)
過E作EG⊥AB,連接FG,
∵EF∩EG=E.
EF?面EFG,EG?面EFG,∴AB⊥面EFG.----(12分)
(方法二)
畫法:過C在平面ABC內(nèi)M作CE⊥AB,垂足為E.連接DE.
過點P作MN∥CD,交AC于M,AD于N.
過M作MH∥CE,交AE于H,連接HN,平面HMN為所求.----(4分)
理由:∵△ABC≌△ABD,
∴DE⊥AB.----(6分)
∵$\frac{AH}{HE}=\frac{AM}{MC}$,$\frac{AM}{MC}=\frac{AN}{ND}$,
∴$\frac{AH}{HE}=\frac{AN}{ND}$,
∴HN∥DE,----(8分)
∴AB⊥HN.
由畫法知,AB⊥HM,
∵HM∩HN=H,
HM?面MNH,HN?面MNH,
∴AB⊥平面MNH.----(12分)

點評 本題主要考查了線線垂直和線面垂直的判定定理,它們之間的轉(zhuǎn)化是關(guān)鍵,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=sinx+cosx的圖象向右平移t(t>0)個單位長度后所得函數(shù)為偶函數(shù),則t的最小值為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x,則下列表述正確的是(  )
A.f(x)在(-$\frac{π}{3}$,-$\frac{π}{6}$)單調(diào)遞減B.f(x)在($\frac{π}{6}$,$\frac{π}{3}$)單調(diào)遞增
C.f(x)在(-$\frac{π}{6}$,0)單調(diào)遞減D.f(x)在(0,$\frac{π}{6}$)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{3}$,$\overrightarrow a=2\overrightarrow{e{\;}_1}-\overrightarrow{e_2}$,則$\overrightarrow a$在$\overrightarrow{e_1}$上的投影是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知橢圓$\frac{x^2}{k}+\frac{y^2}{5}=1$的一個焦點坐標(biāo)為(2,0),則k的值為(  )
A.1B.3C.9D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(2-x),當(dāng)x∈[0,2]時,f(x)=-4x2+8x.若在區(qū)間[a,b]上,存在m(m≥3)個不同整數(shù)xi(i=1,2,…,m),滿足$\sum_{i=1}^{m-1}$|f(xi)-f(xi+1)|≥72,則b-a的最小值為( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=eax+b在(0,f(0))處的切線為y=x+1.
(1)若對任意x∈R,有f(x)≥kx成立,求實數(shù)k的取值范圍.
(2)證明:對任意t∈(-∞,2],f(x)>t+lnx成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?孫子算經(jīng)?中有道算術(shù)題:“今有百鹿入城,家取一鹿不盡,又三家共一鹿適盡,問城中家?guī)缀?”意思是?00頭鹿,每戶分1頭還有剩余;每3戶再分1頭,正好分完,問共有多少戶人家?設(shè)計框圖如圖,則輸出的值是(  )
A.74B.75C.76D.77

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交實驗,選取的植株均為矮莖的概率是多少?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊答案