【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計厚度,單位:米),按計劃容積為 立方米,且 ,假設建造費用僅與表面積有關(圓柱底部不計 ),已知圓柱部分每平方米的費用為2千元,半球部分每平方米的費用為2千元,設該容器的建造費用為y千元.

(1)求y關于r的函數(shù)關系,并求其定義域;
(2)求建造費用最小時的 .

【答案】
(1)解:由容積為 立方米,得 ,解得 ,又圓柱的側面積為 ,半球的表面積為 ,所以建造費用 ,定義域為 .

(2)解: ,又 ,所以 ,所以建造費用 ,在定義域 上單調遞減,所以當r=3時建造費用最小.

【解析】(1)由該幾何體的容積等于圓柱的體積加上半球的體積可求出h=≥2r解得r的取值范圍,再利用該幾何體的表面積等于圓柱的側面積加上半球的表面積,進而得出建造費用的函數(shù)解析式。(2)根據(jù)題意對原函數(shù)求導,結合題意討論導函數(shù)的正負即可得出原函數(shù)的單調性,進而得出建造費用的最小.
【考點精析】解答此題的關鍵在于理解函數(shù)的極值與導數(shù)的相關知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標原點o為極點,x軸的正半軸為極軸,并取相同的長度單位,建立極坐標系.曲線
(1)若直線l曲線 相交于點 , , ,證明: 為定值;
(2)將曲線 上的任意點 作伸縮變換 后,得到曲線 上的點 ,求曲線 的內接矩形 周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 是兩個平面, 是兩條直線,有下列四個命題:
⑴如果 ,那么 .
⑵如果 ,那么 .
⑶如果 ,那么 .
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當x≥0時,f(x)= ,則關于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點之和為(
A.3a﹣1
B.1﹣3a
C.3a﹣1
D.1﹣3a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準 (噸),一位居民的月用水量不超過 的部分按平價收費,超出 的部分按議價收費,為了了解居民用水情況,通過抽祥,獲得了某年100位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照 分成 組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中a的值;
(2)若該市有110萬居民,估計全市居民中月均用水量不低于 噸的人數(shù),并說明理由;
(3)若該市政府希望使80%的居民每月的用水量不超過標準 (噸),估計x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=e2x , g(x)=lnx+ ,對a∈R,b∈(0,+∞),使得f(a)=g(b),則b﹣a的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(-2,0),B(0,1),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知坐標平面上的凸四邊形 ABCD 滿足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案